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摘要

在群眾分包的問題中，平台將許多子問題（例如影像標記）分派給

不同的工人，並搜集他們的答案。顧及工人的隱私，搜集的資料通常

為匿名的，讓平台在進行最後的決策與估計變得十分困難。在此論文

中，我們提出了兩種解決方法，首先是以測試問題推估工人的可靠性，

而第二種則是匿名假說檢定。

考慮一個大小為 n的資料庫，其中每筆資料紀錄了一個工人的群

組（依據其可靠度所分群），而總共的群組個數為有限的。測試問題

讓我們能區分不同群組，也就是說，對於不同類別的工人，他們所標

記的答案是不同的。我們可以選擇其中一部份的工人記錄其標記的統

計結果（亦即該部分工人當中，每個群組所佔的人數），而我們希望

以最少的測試問題 T ∗
n 將每個工人確切的類別復原出來。然而，在實

際情況中，該統計結果往往是不精確、有雜訊的。我們假定雜訊的大

小為 δn，而我們的目標是希望復原錯誤的人數少於 kn。在這個問題

中，我們主要的貢獻有以下兩點：首先，當 δn = O(
√
kn)時，需要大

約 T ∗
n = Θ(n/ logn)數量級的測試問題，可以將工人的類別回復。對於

達到上界的驗算法，我們採取“隨機取樣”的想法，將每筆測試問題以

二分之一的機率隨機送給每個工人。而下界的部分，則是使用“填裝”

的想法構造一個不等式。再來對於 δn = Ω(k
(1+ϵ)/2
n )（其中任意 ϵ > 0）

的情形，我們證明了至少需要 T ∗
n = ω(np)的測試問題，才足以達成我

們的目標。對於這種雜訊強度較高的情形，我們發展了一套新的下界

方式，並使用了一些組合最佳化的技巧。

在第二部分，我們考慮匿名假說檢定，在其中不同群組的工人們

有著不同的標記能力，因此其答案有著不同的機率分佈。困難之處在

於，雖然我們知道每個群組的確切人數，但我們並不知道每筆標記資

料是來自哪個群組，因此我們將此問題約化為“多重假說檢定”。在這

部分，我們的第一個貢獻是提出了最佳的測試，可寫為在不同假說底

下的混合分佈之概似比檢定。第二個貢獻則是刻劃出在樣本數 n趨近

於無限大時，在 Neyman-Pearson setting底下第二類錯誤趨近於零的速
度。該收斂速度的冪次方在機率分布空間之上定義了一個廣義的賦距，

同時此結果可以被推廣到 Chernoff regime。
我們的結果量化了匿名性對群眾分包問題所造成的效應，並且此理

論工具可應用於許多不同問題，諸如感測網路、物聯網與資訊系統等

等。

關鍵字： 匿名、隱私、群眾分包、感測網路、資料解碼、假說檢定
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Abstract

In this thesis, we propose two treatments to overcome the anonymity issue
in privacy-preserving crowdsourcing: group recovery with golden questions
and anonymous hypothesis testing.

Consider a data set comprising n items, each of which represents a worker
and his or her group index (based on the worker’s labeling reliability). The
golden questions enable us to distinguish disparate group of crowds, that is,
workers from different group will respond different answers. By sequentially
allocating the golden tasks to a subset of crowds, the fusion center will obtain
the histogram of the queried subset. The (unnormalized) histogram, however,
is perturbed by some additive noise with magnitude less than δn. The goal
is to reconstruct the data set such that the Hamming distance between the
reconstructed and the actual one is smaller than a tolerance parameter kn. We
are interested in the fundamental limit on the minimum number of queries T ∗

n

required to recover the n-worker data set within kn tolerance subject to δn
noisy perturbation.

We first show that if δn = O(
√
kn), the minimum query complexity

T ∗
n = Θ(n/ logn), where the achievability is based on random sampling,

and the converse is based on a packing arguments. On the other hand, if
δn = Ω(k

(1+ϵ)/2
n ) for some ϵ > 0, we prove that T ∗

n = ω(np) for any positive
integer p. In other words, no querying methods with poly(n) query complex-
ity can successfully reconstruct the data set in that regime. This impossibility
result is established by a novel combinatorial lower bound on T ∗

n .
For the second remedy, anonymous hypothesis testing, each of item in the

data set corresponds to a response from a single worker. The fusion center
aims to detect a binary parameter by querying the database. The workers are
clustered into multiple groups, and hence the responses in different groups
follow different distributions under a given hypothesis. The key challenge
is the anonymity of the responses – although it knows the exact number of
workers n and the distribution of observations in each group, it does not know
which group each worker belongs to. It is hence natural to consider it as a
composite hypothesis testing problem.

First, we propose an optimal test calledmixture likelihood ratio test, which
is a randomized threshold test based on the ratio of the uniform mixture of all
the possible distributions under one hypothesis to that under the other hypoth-
esis. Second, we focus on the Neyman-Pearson setting and specify the error
exponent of the worst-case type-II error probability as n tends to infinity, as-
suming the number of workers in each group is proportional to n. The expo-
nent defines a new divergence between two vector distributions. The results
are extended to Chernoff regime by solving a convex optimization problem.
Our results elucidate the price of anonymity in anonymous detection.

The developed theories and tools are not restricted to crowdsourcing prob-
lem, but can be widely applied to various tasks, such as wireless sensor net-
works, Internet of Thing, or information retrieval system, etc..

Keywords: Anonymity, Crowdsourcing, Data Decoding, Hypothesis Testing
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Chapter 1

Introduction

Information retrieval from large-scale data sets plays a crucial role inmany fields including

data mining, machine learning, Internet of Thing (IoT), etc.. However, as the amounts of

data expands exponentially, nearly all of it carries someone’s digital fingerprint, which

might cause severe disclosure of personal information. One of a common approach to

overcome the problem is to restrict the released data from data center being anonymous.

This motivates us to study the impact of anonymity on information retrieval processes.

Specifically, in this thesis we focus on the topic of privacy-preserving crowdsourcing,

studying how anonymity deteriorates the performance of crowdsourcing and how to cope

with it. However, we emphasize that the developed theories and tools are not restricted

to crowdsourcing problem, but can be widely applied to various fields, such as wireless

sensor networks, Internet of Thing, or information retrieval system, etc..

1.1 Privacy-preserving Crowdsourcing

In past decades, the great success on machine learning is attributed to the large-scale well-

labeled data sets. Efficiently obtaining accurate labels turns out to be a key to developing

machine learning models. Crowdsourcing provides a solution to collect labels by dividing

the tasks into numbers of micro-tasks, and then distributes micro-tasks to different crowds.

Typically each micro-task is simple, so crowds can solve it rapidly with relatively cheap

cost.
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However, qualities of each crowd varies greatly as many studies on crowdsourcing

suggesting. For example, [25] pointed out that crowds can be tendentious workers who

response with certain bias, spammers who always annotate data randomly and indepen-

dently with the given task, or even adversaries who label data in a malicious way in order

to paralyze the system. In general, crowds are quantified into different levels or groups

according to their ability, and this quantification may depend on their backgrounds such

as credit record, educational level, or the acceptance rate of previous tasks. Because of the

heterogeneity among crowds, if we collect the results directly from each worker’s answer,

it will be very inaccurate and with low utility. A common approach is to allocate a same

task to various workers instead of simply one, and then estimate the result according to

the the collected answers such as majority votes.

Fusion
Center

…..
X1 X2 XnXn−1

Figure 1.1: Crowdsourcing Framwork

The hardness of this problem lies in that typically the platform (or the fusion center)

do not know the group each worker belongs to, although this group information could help

requesters estimate true labels more precisely. The reason is that the quantification usually

comprises sensitive information such as the crowds’ ages, genders, or educational levels,

and may severely invade their privacy. Besides, if the number of possible groups is large,

then it costs too much communication budget to identify it.

To address the anonymity issue, we propose two treatments. The first one is estimat-

ing the group information with the help of golden tasks, where golden tasks are tasks with

given answers and are used to test the group each worker belongs to. We will elaborate

2



how golden tasks are employed to efficiently recover the group information in the next

subsection. The second treatment is testing the hypothesis anonymously. Since the ul-

timate goal of crowdsourcing is to obtain accurate and reliable labeled data, the group

information of each worker is indeed ignorable once we can estimate the true label with

small error. Therefore, we seek to design an decision rule to test the hypothesis anony-

mously with minimum detection error.

1.2 Group Recovery with Golden Questions

The golden tasks (or golden questions) possess the following two characteristics: given

the golden tasks, the response from each worker is almost deterministic (with noise small

enough, which will be rigorous elaborated in the problem formulation), and the answers

from different group of workers are different, that is, these golden questions allow us to

distinguish disparate group of crowds.

However, the fusion center can only collect the answers in an anonymous query,

termed histogram query, where each query is a subset of workers, and the response is the

histogram (the number of workers belonging to each group) of the corresponding work-

ers. For example, in [19], histogram query (or called counting query for binary group)

is studied and analyzed as a privacy-preserving database model. Besides, the collected

responses may be further perturbed by some noise. We aim to characterizing the funda-

mental limit on the number of queries (termed query complexity) required to recover the

group information. In general, we can cast the group recovery problem into a data extrac-

tion problem: the group information of each worker can be regarded as a data set, where

each item corresponds to a worker, and the value of each item is the group each worker

belongs to. The goal is to recover the data set according to the queried answers.

Characterizing the fundamental limit on the number of queries (termed query com-

plexity) required to extract the data set is important to both data analysts and data curators.

In [43], the fundamental limit on the minimum query complexity to precisely extract the

entire n-item data set with noiseless histogram queries is characterized. The optimal query

complexity was shown to be Θ(n/ logn), where n is the size of the data set. Moreover,

3



an explicit construction of the querying method achieving the optimal query complexity

is proposed. However, for the general setting where the goal is to partially extract the

data set with noisy query responses, the characterization of the optimal query complexity

remains open.

In this work, we investigate the optimal query complexity T ∗
n for partial data extraction

with noisy responses to histogram queries. The response from the curator is the actual

unnormalized histogram of the queried subset of items, perturbed by an additive noise with

maximum magnitude δn. The goal of the analyst is to reconstruct the data set partially so

that the Hamming distance between the reconstructed and the actual data set is at most kn.

Our main contribution is characterizing the asymptotic behavior of T ∗
n with respect to

the size of the data set n and the two parameters kn, δn coupled with n:

1) In the regime δn = O(
√
kn), T ∗

n = Θ(n/ logn), which is the same as the optimal query

complexity for perfect reconstruction with noiseless responses to queries [43].

2) In the regime δn = Ω(k
(1+ϵ)/2
n ) for some ϵ > 0, T ∗

n = ω(np) for any positive integer p.

In words, there does not exist querying methods with Poly(n) query complexity.

For proving the achievability part (upper bound on T ∗
n ), randomized querying is em-

ployed. In each query, the items to be included in the queried subset are randomly and

uniformly selected. An upper bound on the probability of failure to distinguish two dif-

ferent data sets is then proved, showing that if δn = O(
√
kn), Ω(n/ logn) such queries

ensure vanishing probability of failure. For proving the converse part (lower bound on

T ∗
n ), we first show that T ∗

n = Ω(n/ logn) based on a packing argument, extending the

proof in [43] to general δn, kn. We then develop a novel combinatorial lower bound on T ∗
n

and show that if δn = Ω(k
(1+ϵ)/2
n ) for some ϵ > 0 then no method with polynomial query

complexity can reconstruct the data set within Hamming distance of kn.

Finally, we emphasize that our results for group recovery also apply to various prob-

lems, such as pooled data decoding, integer group testing, or coin weighing problem.
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1.3 Anonymous Hypothesis Testing

Our second treatment for privacy-preserving crowdsourcing problem is to test hypothe-

sis anonymously. The crowdsourcing problem is directly related to the wireless sensor

networks. Each worker can be regarded as a sensor, and observations of sensors under a

given hypothesis represents the workers’ labeling outputs for a specific tasks. Hence the

results from wireless sensor networks directly apply.

For distributed detection in wireless sensor networks [40], when the observations fol-

low identically and independently distributed (i.i.d.) distributions across all sensors, iden-

tifying individual sensors is not very important. When the fusion center can fully access

the observations, the empirical distribution (types) of the collected observation is a suf-

ficient statistics. When the communication between each sensor and the fusion center is

limited, for binary hypothesis testing it is asymptotically optimal to use the same local de-

cision function at all sensors [39]. Hence, anonymity is not a critical issue for the classical

(homogeneous) distributed detection problem.

However, when the joint distribution of the workers’ responses is heterogeneous, that

is, the marginal distribution of the response varies across workers, anonymity (unknowing

the group information about each worker) may deteriorate the performance of distributed

detection, even for binary hypothesis testing. One such example is distributed detection

under Byzantine attack [30], where a fixed number of workers are compromised by ma-

licious attackers and report fake responses following certain distributions. Even if the

fusion center is aware of the number of compromised workers and the attacking strategy

that renders worst-case detection performance (the least favorable distribution as consid-

ered in [23, 24, 41]), it is more difficult to detect the hidden parameter when the fusion

center does not know which workers are compromised.

In the second part of this thesis, we aim to find the optimal decision rule, and simultane-

ously quantify the performance loss due to anonymity in heterogeneous distributed detec-

tion, with n workers and a single fusion center. Each worker (say worker i, i ∈ {1, ..., n})

has a single random labeling response Xi. The goal of the fusion center is to estimate

the hidden parameter θ ∈ {0, 1} (that is, binary hypothesis testing) from the collected
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observations. The distributions of the responses, however, are heterogeneous – responses

at different workers may follow different sets of distributions. In particular, we assume

that these n sensors are clustered into K groups {I1, ..., IK}, and group Ik ⊆ {1, ..., n}

comprises nαk workers, for k = 1, ..., K. Under hypothesisHθ, θ ∈ {0, 1},

Xi ∼ Pθ;k, for i ∈ Ik.

Moreover, the workers are anonymous, that is, the collected answers at the fusion center is

unordered. In other words, although the fusion center is fully aware of the heterogeneity

of its responses, including the set of distributions {Pθ;k | θ ∈ {0, 1}, k = 1, ..., K} and

{αk | k = 1, ..., K}, it does not know what distribution each individual response will

follow.

To address the lack of knowledge about the exact distributions of the observations,

we formulate the detection problem as a composite hypothesis testing problem, where the

vector response of length n follows a product distribution within a finite class of n-letter

product distributions under a given parameter θ. The class consists of
(

n
nα1,...,nαK

)
possible

product distributions, each of which follows one of the
(

n
nα1,...,nαK

)
possible partitions of

the workers. The fusion center takes all the possible partitions into consideration when

detecting the hidden parameter. We mainly focus on a Neyman-Pearson setting, where the

goal is to minimize the worst-case type-II error probability such that the worst-case type-I

error probability is not larger than a constant. Towards the end of this part, we also extend

our results to a Bayesian setting, where a binary prior distribution is laid onH0 andH1.

Our main contribution comprises three parts. First, we develop an optimal test, termed

mixture likelihood ratio test (MLRT), for the anonymous heterogeneous distributed de-

tection problem. MLRT is a randomized threshold test based on the ratio of the uniform

mixture of all the possible distributions under hypothesis H1 to the uniform mixture of

those under H0. To prove the optimality, we first argue that there exists an optimal test

that is symmetric, that is, it does not depend on the order of observations across the sen-

sors, and thus we only need to consider tests which depend on the histogram of responses.

In other words, the histogram of observations contains sufficient information for optimal
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detection. Moreover, all possible distributions over the space of observations X n under

H0 (or H1) turn out to be the same one over the space of its histogram, so if we test the

hypotheses according to the histogram, the original composite hypothesis testing problem

boils down to a simple hypothesis testing problem. The one-to-one correspondence be-

tween symmetric tests and tests defined on the histogram is the key to derive optimal test.

This result extends to M -ary hypothesis testing with heterogeneous observations gener-

ated according to hidden latent variables, each of which is associated to a observation, but

the decision maker only knows the histogram of the latent variables.

Second, for the case that the alphabet X is a finite set, we characterize the error ex-

ponent of the minimum worst-case type-II error probability as n → ∞ with {αk | k =

1, ..., K} being fixed. The optimal error exponent turns out to be the minimization of a

linear combination of KL divergences with the k-th term being D (Uk ∥P1;k) and αk be-

ing the coefficient, for k = 1, ..., K. The minimization is over all possible distributions

U1, ..., UK such that
∑K

k=1 αkUk =
∑K

k=1 αkP0;k. In a simple hypothesis testing problem

with i.i.d. responses, a standard approach to derive the type-II error exponent is invoking

a strong converse lemma (see, for example, Chapter 12 in [32]) to relate the type-I and

type-II error probability, and then applying the large deviation toolkit on the optimal test to

single-letterize and find the exponent. In contrast, in our problem, neither can the mixture

distributions in the optimal test be decomposed into a product form, nor can the acceptance

region be bounded by a large deviation event, making this approach fail to characterize the

error exponent. To circumvent the difficulties, we turn to method of types and use bounds

on types (empirical distributions) for single-letterization. Intuitively, the exponent mea-

sures “how close” the two hypothesis classes H0 and H1 are from each other, as the role

that KL-divergence plays in simple hypothesis testing problems.

For achievability, instead of the optimal MLRT which is difficult to single-letterize,

we employ a simpler test that resemble Hoeffding’s test [22]. For the converse, we use an

argument based on the method of types. We propose a generalized divergence

Dα1,...,αK
(P1, ..., PK ;Q1, ..., QK)
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from a group of distributions {Q1, ..., QK} to another group of distributions {P1, ..., PK},

which plays a similar role as KL divergence in simple hypothesis testing problems. The

key to the characterization of the optimal error exponent is to prove a generalized Sanov

Theorem for the composite setting we considered. Based on the characterized error ex-

ponent, given the number of bits that a sensor can send to the fusion center, one can also

formulate an optimization problem to find the best local decision functions, as in the ho-

mogeneous case [39].

As a by-product, we apply our results for K = 2 to the distributed detection problem

under Byzantine attack and further obtain bounds on the worst-case type-II error exponent.

Compared with the worst-case exponent in an alternative Bayesian formulation [30] where

the observation of sensors are assumed to be i.i.d. according to a mixture distribution, it is

shown that the worst-case exponent in the composite testing formulation is strictly larger.

This hints that the conventional approach taken in [30] might be too pessimistic.

In order to be consistent with the previous literatures, we use languages and notations

from wireless sensor networks, where the term sensors and observations represent crowds

and responses, as stated in previous context. After all, the essence of the two problems

are indeed identical.

1.4 Beyond Neyman-Pearson Regime: Anonymous Hy-

pothesis Testing for Bayesian Formulation

Finally, we extend our results from the Neyman-Pearson setting to a Bayesian setting

(a.k.a. Chernoff’s regime), minimizing the average probability of error (that is, combin-

ing type-I and type-II error). It can be shown that the optimal test is computationally

infeasible, since it involves summation over all possible permutations. To overcome the

complexity issue, we propose an asymptotically optimal test based on information geom-

etry, which achieves the same error exponent of the average probability of error. We also

study the exponent region R, the collection of all pairs of achievable type-I and type-II

error exponents. In particular, we propose a way to parametrize the contour ofR based on
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information projection. However, the closed-form expression of R involves an explicit

solution of a convex optimization problem, which remains unsettled.

1.5 Organization of the Thesis

The thesis comprises two parts. The contents of Part I are published in [10], and part of

Part II are published in [9] and [12].

In Chapter 2, we set up some basic knowledge, including hypothesis testing, large de-

viation theory, and other information theoretical bounds, which serve as the main tools for

this work. In Chapter 3, we first review some literatures on group testing and pooled-data

decoding, summarize their formulation and results, and formally formulate the data ex-

traction (group recovery with golden sample) problem. Fundamental limits on high SNR

are established by setting both achievability and converse results; for low SNR regime,

we demonstrate the impossibility to recover the group information.

In Chapter 4, we investigate the anonymous hypothesis testing problem. First we re-

visit previous works related to hypothesis testing, distributed detection, and Byzantine

attack, and then we mathematically formulate the anonymous detection problem into a

composite hypothesis testing, focusing on Neyman-Pearson regime. As our first contri-

bution in this part, optimal decision rule will be fully characterized. Then, we move on

to the asymptotic regime, specify the type-II error exponent, which can be expressed in a

generalized divergence between the distributions under each hypothesis. Some properties

of exponent will be discussed. We also apply our results under Byzantine attack, and com-

pare with related works. In Chapter 5, we extend our results to Bayesian setting, where an

asymptotically optimal, computational efficient test will be given. Then we show that to

depict the region of all achievable type-I and type-II error exponents, it suffices to solve

the information projection problem with respect to the generalized divergence proposed

in previous chapter. However, the closed expression is still an open problem.

Finally, in Chapter 6, we summarize our analysis on privacy-preserving crowdsourcing

problem and propose a scheme to overcame the anonymity issue. We closing this thesis

by providing some ambitious but interesting directions, such as partial group recover or

9



optimal crowds clustering.
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Chapter 2

Background

In this chapter, we review some useful tools from information theory.

2.1 Basic Information Theory

2.1.1 Kullback-Leibler Divergence

Let P,Q be two probability distributions defined on space X .

Definition 2.1.1 (Kullback-Leibler Divergence) The Kullback-Leibler divergence (KL

divergence) is defined as

D (P ∥Q) ≜


EP
[
log P (X)

Q(X)

]
, if P ≪ Q

+∞, else.

Several important properties of KL divergence can be found in [32]. Here we list one

which will be frequently used in latter chapters:

Property 2.1.1 (Convexity of KL divergence) The KL divergence is convex. That is, for

all distributions P1, P2, Q1, Q2, and for all λ ∈ [0, 1], we have

D (λP1 + (1− λ)P2 ∥λQ1 + (1− λ)Q2) ≤ λD (P1 ∥Q1) + (1− λ)D (P2 ∥Q2) .
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2.1.2 Method of Types

For a sequence xn ∈ X n, where X = {a1, a2, ..., ad}, its type (empirical distribution) is

defined as

Πxn = [π(a1|xn), π(a2|xn), ..., π(ad|xn)] ,

where π(ai|xn) is the frequency of ai in the sequence xn, that is,

π(ai|xn) =
1

n

n∑
j=1

1{xj=ai}.

For a given length n, we use Pn to denote the collection of possible types of length-n

sequences. In other words,

Pn ≜
{[

i1
n
,
i2
n
, ...,

id
n

] ∣∣∣∣ ∀i1, ..., id ∈ N ∪ {0}, i1 + i2 + · · ·+ id = n

}
.

Let U ∈ Pn be an n-type. The type class Tn(U) is the set of all length-n sequences with

type U ,

Tn(U) ≜ {xn ∈ X n | Πxn = U} .

Let us introduce some useful lemmas about type.

Lemma 2.1.1 (Cardinality Bound of Pn)

|Pn| ≤ (n+ 1)|X |.

In words, |Pn| grows polynomial in n.

Lemma 2.1.2 (Probability of Type Class) Let P ∈ Pn, Q ∈ PX . Then

1

(n+ 1)|X |2
−nD(Q ∥P ) ≤ Q⊗n(Tn(P )) ≤ 2−nD(Q ∥P ).

For finiteX ,PX can be viewed as a subspace inRd endowedwith Euclideanmetric and

standard topology. The following theorem, developed by Sanov, depicts the probability

of a large deviation event.
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Lemma 2.1.3 (Sanov’s Theorem) Let Γ ⊆ PX . Then we have

− inf
T∈int Γ

D (T ∥Q) ≤ lim inf
n→∞

1

n
logQ {xn : Πxn ∈ Γ} (2.1)

≤ lim sup
n→∞

1

n
logQ {xn : Πxn ∈ Γ} (2.2)

≤ − inf
T∈cl Γ

D (T ∥Q) , (2.3)

where int Γ and and cl Γ respectively denote the interior and the closure of Γ, with respect

to the standard topology on Rd. In particular, if the infimum on the right-hand side is

equal to the infimum on the left-hand side in (2.1), we have

lim
n→∞

1

n
logQ {xn : Πxn ∈ Γ} = − inf

T∈Γ
D (T ∥Q) .

Proofs of the lemmas mentioned above can be found in standard information theory

textbooks, Chapter 11 in [13] for example. Alternatively, a more rigorous proof of Sanov’s

theorem Lemma 2.1.3 can be found in [14].

2.2 Concentration Inequalities and Large Deviation

In this section, we introduce some concentration inequalities and basic large deviation

theory.

Lemma 2.2.1 (Large Deviation Theory) LetX1, X2, ..., Xn
i.i.d.∼ P . Then for any γ ∈ R,

lim
1

n
− logP

(
1

n

n∑
k=1

Xk > γ

)
= inf

Q:EQX>γ
D (Q ∥P )

lim
1

n
− logP

(
1

n

n∑
k=1

Xk ≥ γ

)
= inf

Q:EQX≥γ
D (Q ∥P ) .

Proof. See Chapter 14 in [32].

Given a distribution P on X ⊆ R, and let X be a random variable on X with proba-

bility measure P and Borel σ−field B. Define the cumulative generating function (CFG)
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as

ψX(λ) = log
(
EP eλX

)
.

Sometimes we write ψX(λ) as ψP (λ) to emphasize thatX are distributed according to the

measure P .

Lemma 2.2.2 (Information Projection) Let

A = infψ′
X = essinfX ≜ sup{a : X ≥ aP − a.s.}

B = supψ′
X = esssupX ≜ sup{b : X ≤ bP − a.s.}.

The information projection problem over E = {Q : EQX ≥ γ} has solution

min
Q:EQX≥γ

D (Q ∥P ) =



0, γ < EPX

ψ∗
P (γ), EPX ≤ γ < B

− logP (X = B), γ = B

+∞, γ > B,

where ψ∗
P (λ) is the Lagrange conjugate of ψP (λ).

Proof. See Chapter 14 in [32].

Lemma 2.2.3 (Chernoff Bound) Let X ∼ P . Then the following bound holds for all

λ ≥ 0 :

P (X ≥ γ) ≤ e(λγ+ψX(λ)).

2.3 Hypothesis Testing

In this section, we introduce the classical hypotheses testing problem, which will be fre-

quently used to tackle detection problems in WSN. We summarize some important results

in simple hypothesis testing and in asymptotic regime. All the proofs of below lemmas

can be found in [32].
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2.3.1 Simple Hypothesis Testing

Let X be a random variable taken values in alphabet X , and P,Q be two probability

distributions on X . Two hypotheses are considered:


H0 (Null hypothesis) : X ∼ P

H1 (Alternative hypothesis) : X ∼ Q.

We test the hypothesis according to a (randomized) test ϕ : X → [0, 1]. To evaluate a

given test ϕ, probability of two types of error events are considered:


False alarm (type-I error): PFA(ϕ) ≜ EP [ϕ(X)]

Miss detection (type-II error): PMD(ϕ) ≜ EQ[1− ϕ(X)].

Depending on applications, the problem of finding ’best’ test function can be formulated

in two differently approaches:

1. Neyman-Pearson formulation: In Neyman-Pearson regime, we aim to find a test

which minimize type-II error while constraining type-I error not greater than a given

constant ϵ:

β∗(ϵ) ≜ min
ϕ

PMD(ϕ), subject to PFA(ϕ) ≤ ϵ.

2. Bayesian formulation: In Bayesian’s regime, prior onH0,H1 are π0, π1 respectively.

Our goal is to design a test to minimize the overall probability of error:

Pe
∗ ≜ min

ϕ
π0PFA(ϕ) + π1PMD(ϕ).

It is well known that the randomized likelihood ratio test (LRT) is optimal for both the

Neyman-Pearson and Bayesian formulations. The detailed results can be found in [32].
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2.3.2 Asymptotic Regime

In asymptotic regime, we consider Xn = (X1, X2, ..., Xn) ∈ X n as the sample size n

tends to infinity. The hypotheses we consider are as below:


H0 : X

n ∼ P⊗n

H1 : X
n ∼ Q⊗n,

where we use “⊗n” to denote the i.i.d. extension of distributions. The decision function

(a.k.a test) ϕn is a mapping from X n to [0, 1]. Thus the probabilities of two error events

are 
Type-I error: PFA

(n)(ϕn) ≜ EXn∼P⊗n [ϕn(X
n)]

Type-II error: PMD
(n)(ϕn) ≜ EXn∼Q⊗n [1− ϕn(X

n)].

Neyman-Pearson formulation and Bayesian formulation are considered respectively. In

Section 2.3.1, we see that the optimal test is LRT, and it’s not hard to show that under

asymptotic regime, the error exponent of LRT decays exponentially in sample size n. For

Neyman-Pearson problem in large sample setting (a.k.a. Stein’s regime), we aim to find

the minimum exponent of type-II error, under the constraint that type-I error less than a

threshold ϵ:

E(ϵ) ≜ lim
n→∞

− 1

n
log β∗(n, ϵ), (2.4)

given that the limit exists, where

β∗(n, ϵ) ≜ min
ϕn

PMD
(n)(ϕn) subject to PFA

(n)(ϕn) ≤ ϵ.

Lemma 2.3.1 (Stein’s Lemma) For all ϵ ∈ (0, 1), the optimal type-II error exponent

does not depend on ϵ, and is characterized by the KL divergence between P,Q:

E(ϵ) = D (P ∥Q) , ∀ϵ ∈ (0, 1).

Note that Stein’s lemma ensures that the limit in (2.3.2) exists and is equal to D (P ∥Q).
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In the Bayesian problem, the goal is to minimize overall probability of error. Under

large sample setting (a.k.a. Chernoff’s regime), we aim to characterize the exponent of

overall probability of error :

F ≜ − lim
n→∞

1

n
logP ∗

e (n),

where

P ∗
e (n) ≜ min

ϕn
π0PFA

(n)(ϕn) + π1PMD
(n)(ϕn).

Lemma 2.3.2 (Chernoff Information) The optimal error exponent in Bayesian problem

is the Chernoff information between distributions P and Q, which is defined as follows:

CI(P,Q) ≜ min
λ∈[0,1]

log

(∫
X

(
Q(x)

P (x)

)λ
P (dx)

)(−1)

.

Remark 2.3.1 The optimal error exponent, that is, the Chernoff information CI(P,Q)

can be achieved by maximum a posteriori (MAP) test, which is LRT with threshold equal

log(π0/π1):

ϕn(x
n) = 1{log(Q(xn)/P (xn))≥log(π0/π1).

Though LRT is optimal in simple hypothesis testing problem, sometimes it is hard to

analyze, especially when the underlying probability measure is not independent. There-

fore, we introduce the following sun-optimal test which also achieves the same error ex-

ponent as LRT (but is not optimal in finite-sample regime).

Lemma 2.3.3 (Hoeffding’s Test) For the simple hypothesis testing problem, consider the

following test:

ϕ(xn) = 1{D(Πxn ∥P )>ϵ′},

where ϵ′ is chosen such that type-I error is less then ϵ, that is,

EP
[
1{D(Πxn ∥P )>ϵ′}

]
≤ ϵ.
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Then, the probability of type-II error decreases exponentially in n, with exponent

E(ϵ) = D (P ∥Q) .

Proof. See [22]

2.3.3 Composite Hypothesis Testing

In general, the null or the alternative hypothesis may consist of more than one possible

distribution, which forms the composite hypothesis testing problem. Finding a test which

is uniformly most powerful (UMP) 1 is usually impossible except for some special cases.

See [29] for more details. Therefore, we focus on minimax criterion. Below we formally

define the minimax problem for composite hypothesis testing.

Consider the problem for testing the following hypothesis:


H0 : X ∼ Pθ, θ ∈ Ω

H1 : X
n ∼ Pθ′ , θ

′ ∈ Ω′,

(2.5)

and we assume Ω and Ω′ are disjoint. We aim to find the minimax test:


ϕ∗
NP ≜ argmin

ϕ
max
θ′∈Ω′

EPθ′ [1− ϕ(X)], subject to max
θ∈Ω

EPθ[ϕ(X)] ≤ ϵ.

ϕ∗
Bayes ≜ argmin

ϕ
max

θ′∈Ω′,θ∈Ω
π0EPθ′

[1− ϕ(X)] + π1EPθ
[ϕ(X)].

The lemma below demonstrates that the probability of errors under minimax criterion

are lower bounded by any reduced simple hypothesis testing problems:

Lemma 2.3.4 (Lower Bound on Composite Hypothesis Testing) Letπ(θ), π′(θ′) be two

arbitrary prior distributions on Ω,Ω′. Consider the following simple hypothesis testing

1 A test ϕ∗ is UMP, if EPθ
[ϕ] ≤ EPθ

[ϕ∗] implies EQθ′ [1− ϕ] ≥ EQθ′ [1− ϕ∗], for any θ, θ′.
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reduced from the composite one defined in (2.5):


H̃0 : X

n ∼
∫
Ω
π(θ)Pθdθ

H̃1 : X
n ∼

∫
Ω′ π

′(θ′)Pθ′dθ
′,

and denote β̃∗(ϵ), P̃e
∗ as the type-II and overall probability of error in Neyman-Pearson

and Bayesian regime respectively. Let β∗(ϵ), Pe
∗ be the minimax type-II and minimax

overall probability of error in composite setting, that is,


β∗(ϵ) ≜ min

ϕ
max
θ′∈Ω′

EPθ′
[1− ϕ(X)], subject to max

θ∈Ω
EPθ[ϕ(X)] ≤ ϵ.

Pe
∗ ≜ min

ϕ
max

θ′∈Ω′,θ∈Ω
π0EPθ′ [1− ϕ(X)] + π1EPθ

[ϕ(X)].

Then the following bounds hold for all prior π(θ), π′(θ′):

β∗(ϵ) ≥ β̃∗(ϵ),

Pe
∗ ≥ P̃e

∗
.
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Part I

Group Recovery with Golden Tasks

21





Chapter 3

Data Extraction with Presence of Noise

3.1 Previous Work

As stated in Chapter 1, the golden questions allow us to distinguish different group of

crowds, so we can cast the group recovery problem into a categorical data extraction prob-

lem: the group information of each worker can be regarded as a data set, where each item

corresponds to a worker, and the value of each item is the group each worker belongs to.

The goal is to recover the data set according to the queried answers.

Prior work on categorical data extraction with histogram queries for generic alphabet

A was initiated in [43], where the optimal query complexity of exact reconstruction is

shown to be Θ(n/ logn) with noiseless responses, and improved to Θ( k
log k log

n
k
) when

the data set is sparse with sparsity level k [42]. Furthermore in [1], upper and lower bounds

on the pre-constants in the n/ logn scaling are also proved. In [1, 2], they specified a

sharp upper bound on the rate of query complexity, and also proposed a computational

efficient algorithm (approximate message passing), pointing out there is a gap between

information theoretic and algorithmic bounds. Later in [36], converse lower bound on

the rate is given, showing that the constant are indeed tight. Besides, [36] also studied

the query complexity with presence of random noise, and obtained similar behavior like

in group testing. However, the considered scenario in [36] is different from us, as they

assumed the noise is randomized, while we do not make assumption on the distributions

of noise, so it can be in an adversarial way.
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Independently, in computer science literatures [5, 7, 6], the pooled data extracting

problem also termed “coin weighing problem”. [5] studied the query complexity with

presence of erasure error (which is also different from our setting), gave an information

theoretic bound on the query complexity.

Our problem can also be viewed as generalization of group testing[33], where the

response is “OR” of the sampled bits while in our setting the response is “SUM” instead. A

line ofworks have taken an information theoretic approach towards group testing problems

[4, 3, 37, 27, 35].

Our work is closely related to studies of lower bounds in data privacy, where the focus

is on deriving conditions on the perturbation level in the response so that no computationally-

efficient algorithms can reconstruct the private data set from aggregated queries. Binary

alphabet (A = {0, 1}) is mainly considered in these works. In [19], noisy response to

histogram query is proven to be differential private with proper perturbation. In [17],

it is shown that no algorithm with polynomial running time can reconstruct a constant

fraction of the entire data set when the perturbation level δn = Ω(
√
n). Besides, when

δn = o(
√
n), a polynomial-running-time algorithm is given, where the query complexity

is ω(n). In [20], query complexity and running time are improved to n and Θ(n logn)

respectively.

However, all the reconstruction algorithms [17, 18, 20, 8] aim to recover only a con-

stant fraction of the entire data set (kn = Θ(n)) with perturbation δn ≈
√
n, and can be

viewed as special cases in the regimes considered in this work.

3.2 Problem Formulation

Following [43], we cast the data extraction problemwith n items and Tn queries as a linear

inverse problem.
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3.2.1 Data Set, Queries, and Responses

Consider a data set with n items, labeled from 1 to n. Each item possesses a piece of

data which takes value in a finite alphabet A = {a1, a2, ..., ad} and |A| = d. We first

consider the case d = 2, and assume without loss of generality A = {0, 1}. Later in

Section 3.6, it is explained how to extend the results to general d. Let us denote the data

set as x ∈ X , where X denotes the collection of all possible realization of data sets. For

now, X = {0, 1}n×1.

To address the partial reconstruction criterion, we use the Hamming distance, formally

stated below.

Definition 3.2.1 (Distance between two data sets) Let x, x̃ ∈ X be two data sets with

items [x1 ... xn]⊺ and [x̃1 ... x̃n]⊺ respectively. Then, ddata(x, x̃) ≜
∑n

j=1 1{xj ̸= x̃j}.

Consider Tn queries, each query being a subset of labels in [n]. Let Si denote the

queried subset in the i-th query. The response to a query is the histogram of the queried

subset. We shall use a Tn × n query matrix Q ∈ {0, 1}Tn×n to collectively represent the

Tn queries. In particular, (Q)i,j = 1 if and only if the j-th item is included in the i-th

queried subset. In other words, (Q)i,j = 1{j ∈ Si}. Hence, the i-th row q⊺
i ∈ {0, 1}1×n

represents the queried subset in the i-th query. The responses to the queries can then be

represented as the multiplication of the query matrix and the data-set matrix (here, it is an

n × 1 matrix). It is not hard to see that the unnormallized response to the i-th histogram

query yi = q⊺
i x ∈ [n] and hence y = Qx ∈ {0, 1, ..., n}Tn×1.

To address the perturbation in the responses, we use the ℓ∞ norm, formally stated

below.

Definition 3.2.2 (Distance between two response) Supposey, ỹ are the responses to two

queries. The distance between them is defined as dresponse(y, ỹ) ≜ maxi |yi − ỹi|.

3.2.2 Criteria of Data Extraction

Definition 3.2.3 (Tolerance in Partial Extraction) The data extraction task is k-tolerable,

if the reconstructed data set x̃ differs from the original one x by at most k, that is,
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ddata(x, x̃) ≤ k, ∀x ∈ X .

Definition 3.2.4 (Noise Level in Perturbed Response) Responses to queries is of noise

level δ if the perturbed response ỹ has distance at most δ to original y, that is,

dresponse(y, ỹ) ≤ δ.

The goal of the data analyst is to design the query matrix Q to extract the data set

x within distance kn from the δn perturbed response ỹ. Formally, Q has to satisfy the

following:

∀x, x̃ ∈ X , ddata(x, x̃) > kn

=⇒ dresponse(Qx,Qx̃) > 2δn. (3.1)

Definition 3.2.5 (Recoverability) Suppose a query matrixQ ∈ {0, 1}Tn×n satisfies (3.1)

with respect to tolerance kn and noise level δn, then it is called (Tn, kn, δn)-recoverable.

Definition 3.2.6 (Optimal Query Complexity) T ∗
n(kn, δn) denotes the minimum query

complexity for reconstructing a n-item data set with tolerance kn under noise level δn,

that is,

• There exists a Q which is (T ∗
n , kn, δn)-recoverable.

• For allTn < T ∗
n , there does not exist querymatrixQwhich is (Tn, kn, δn)-recoverable.

For a randomized querying method, the query matrix Q is randomly selected from

distribution PQ. To specify the criterion of successfully extracting the data set under ran-

domized querying, let us define the probability of failure as follows:

Definition 3.2.7 (Probability of Failure) For a data setx ∈ X , the probability of failure

Pf (x; kn, δn) with respect to the randomly generated query matrix Q is defined as

PQ {∃ x̃, ddata(x̃,x) > kn, dresponse(Qx̃, Qx) ≤ 2δn}
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Definition 3.2.8 ((Tn, kn, δn)-achievable) Given a sequence of randomly generated query

matrices {Q(Tn,n) | n ∈ N}, we say it is (Tn, kn, δn)-achievable, if

lim
n→∞

max
x∈X

Pf (x; kn, δn) = 0 (3.2)

3.3 Main Results

3.3.1 Achievability

Theorem 3.3.1 (Achievability of Randomized Querying)

Suppose one generates the query matrix Q(Tn,n)
i,j according to the following distribution:

(
Q(Tn,n)

)
i,j

i.i.d.∼ Ber
(
1
2

)
. (3.3)

Then, the extraction criterion (3.2) will be satisfied as long as Tn = Ω( n
logn) and one of

the following conditions holds:

1) kn = O(nϵ), for some ϵ < 1 and δn = O(
√
kn)

2) ∀ ϵ < 1, kn = ω(nϵ) and δn = O(kn
1−ϵ′
2 ) for some ϵ′ > 0.

Proof. The proof involves finding upper bounds on the probability of failure. Details

can be found in Section 3.4.

3.3.2 Lower Bounds on Query Complexity

For the converse part, we give two lower bounds in the following two theorems.

Theorem 3.3.2 (Packing Lower Bound) Let kn ≤
(
1−ϵ
2

)
n for some ϵ > 0. Then, the

following lower bound holds:

T ∗
n(kn, δn) = Ω

(
n
(
1−Hb

(
1−ϵ
2

))
log(n+ 1)− log(4δn + 1)

)
(3.4)

27



Specifically, when δn = O(n
1−ϵ′
2 ), and ϵ, ϵ′ does not depend on n, then (3.4) can be further

simplified to

T ∗
n(kn, δn) = Ω (n/ logn) .

Proof. The successful extraction criterion holds only if for any two data sets x, x̃with

distance greater than kn, the queried output Qx,Qx̃ differ to each other more than 2δn,

say, dresponse(Qx,Qx̃) > 2δn. Therefore, we cast the problem into a packing problem.

The detailed proof is omitted here and can be found in Appendix A of [11]

Remark 3.3.1 The condition kn ≤
(
1−ϵ
2

)
n for some ϵ > 0 is reasonable. Let kn = n/2

and consider the following scenario: we simply make a query with qi = [1, ..., 1]⊺, and

if q⊺
i x > n/2, we reconstruct x as x̃ = [1, ..., 1]⊺, else we say x̃ = [0, ..., 0]⊺. The

reconstruction will succeed with high probability as n grows large enough, by making one

query.

The above lower bound is used when the noise level δn is relatively small with respect

to kn. Next, we give another lower bound which depends on both kn and δn:

Theorem 3.3.3 (Combinatorial Lower Bound)

T ∗
n(kn, δn) ≥

(
n
n/2

)
2

kn/2∑
α=2δn

(
kn/2
α

) α∑
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ

) . (3.5)

This bound is used to prove the impossibility result when δn is large with respect to

kn. Detailed proof is given in Section 3.5.

3.3.3 Fundamental Limit

First, Theorem 3.3.1 gives us a sufficient condition for recovering the data set byΩ(n/ logn)

queries. On the other hand, Theorem 3.3.2 states that Tn = Ω(n/ logn) is also necessary

for reconstruction. We combine them into the following corollary:

Corollary 3.3.1 (Fundamental Limit of Query Complexity) Under the one of the following

two noise-tolerance conditions
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• kn = O (nϵ) for some ϵ < 1, and δn = O(
√
kn), or

• ∀ ϵ < 1, kn = ω (nϵ), and ∃ ϵ′ > 0, δn = O(k
(1−ϵ′)/2
n ),

the optimal query complexity is

T ∗
n(kn, δn) = Θ( n

logn).

Next, following Theorem 3.3.3, we give an impossibility result below:

Theorem 3.3.4 (Impossibility of Poly(n)Query Complexity)

If both the following conditions are satisfied:

• 1
2
n ≥ kn ≥ C1n

ϵ1

• δn = Ω(k
1+ϵ2

2
n )

where ϵ1, ϵ2 ∈ (0, 1), and C1 > 0, then T ∗
n(kn, δn) is ω(np), for all p ∈ N. In words, there

does not exist querying methods with Poly(n) query complexity that can do the job.

Again, the assumption 1
2
n > kn is reasonable due to Remark 3.3.1. To prove this result,

we utilize Chernoff bound to derive a lower bound on T ∗
n(kn, δn), and see that it grows

exponentially fast with n if δn is great enough. The details can be found in Appendix B

of [11].

Remark 3.3.2 Corollary 3.3.1 and Theorem 3.3.4 establish a sharp boundary δn ≈
√
kn

of partial data extraction under noisy responses to histogram queries. Roughly speaking,

if δn ≪
√
kn, then the sufficient and necessary condition to recover data set is T ∗

n =

Θ(n/ logn). On the other hand, if δn ≫
√
kn, there is no querying method with Poly(n)

query complexity can reconstruct data set successfully.

3.4 Achievability via Randomized Querying

In this section, we give the proof of Theorem 3.3.1. The proof involves upper bounding

the probability of failure. Due to the randomized construction of the querying matrix, each
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entry is generated in an i.i.d. fashion. Therefore, we first cast the probability of failure

into the central probability of binomial distribution, and then further upper bound it.

Claim 3.4.1 Under the randomized query defined in (3.3), the probability of failure can

be upper bounded by

Pf (x; kn, δn) ≤
n∑

t=kn

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn , (3.6)

where Bt ∼ Binomial(t, 1/2).

The proof of the above claim is given in Appendix C in [11].

Continuing the proof of Theorem 3.3.1, the key is to separate the summation of (3.6)

into two parts:

k∗∑
t=kn

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

︸ ︷︷ ︸
(i)

+

n∑
t=k∗

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

︸ ︷︷ ︸
(ii)

. (3.7)

Before continuing bounding the probability of failure, we give a lemma to upper bound

the central probability of binomial distribution:

Lemma 3.4.1 Let Bt
iid∼ Binomial(t, 1/2), δn ∈ (0, t/16) then the following two upper

bounds hold:

1) Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 4δn+1√
πt
.

This bound is used when δn is small (with respect to t).

2) Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 1− 2
15
e−64δ2n/t.

This bound is used when δn is large (with respect to t).

The proof can be found in Appendix D in [11].

Now, we are ready for upper bounding (3.7).
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For part (i) in (3.7), applying the second bound in Lemma 3.4.1, we have

k∗∑
t=kn

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

≤
k∗∑
t=1

(
n

t

)
Pr (kn/2− 2δn ≤ Bkn ≤ kn/2 + 2δn)

Tn

≤
k∗∑
t=1

(
n

t

)(
1− 2

15
exp

(
−64δ2n

kn

))m
≤
(
1− 2

15
exp

(
−64δ2n

kn

))Tn
(n+ 1)k

∗ (3.8)

Due to our assumption that δn = O(
√
kn), 64δ2n/kn is upper bounded by some constant

η ≥ 0 for sufficiently large n, and hence

(
1− 2

15
exp

(
−64δ2n

kn

))
≤
(
1− 2

15
exp (η)

)
=: ξ,

for sufficient large n. Note that ξ is a constant which does not depend on n, and is strictly

less than 1.

Hence (3.8) can be further bounded by ξTn(n + 1)k
∗ . To get vanishing probability of

failure, Tn must satisfy

Tn = Ω

(
k∗ logn
log ξ

)
= Ω(k∗ logn) , (3.9)

since ξ does not depend on n.

For part (ii) in (3.7), we have

n∑
t=k∗

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

≤
n∑
t=0

(
n

t

)
Pr (k∗/2− 2δn ≤ Bk∗ ≤ k∗/2 + 2δn)

Tn

≤
(
4δn + 1√
πk∗

)Tn
2n+1, (3.10)

where (3.10) is due to Lemma 3.4.1.
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To obtain vanishing failure probability,

Tn = Ω

(
n+ 1

1
2
log(πk∗)− log(4δn + 1)

)
. (3.11)

Notice that (3.11) requires
√
πk∗ > 4δn + 1.

In order to choose a proper k∗ according to (3.9) and (3.11), we distinguish kn into two

regimes:

1) kn = O (nϵ), for some ϵ ∈ (0, 1):

In this regime, kn = O (nϵ) and δn = O
(
nϵ/2

)
. Hence one can choose k∗ such that

k∗ = Θ
(
nϵ+ϵ

′)
, where ϵ+ ϵ′ < 1.

In this case,

(3.9) =⇒ Tn = Ω
(
nϵ+ϵ

′ logn
)

(3.11) =⇒ Tn = Ω

(
n

(ϵ+ ϵ′) logn/2− log δn

)

2) kn = ω (nϵ), for all ϵ < 1:

In this regime, δn = O
(
k
(1−ϵ′)/2
n

)
, and therefore we can choose k∗ such that k∗ =

Θ
(
n1−ϵ′) . In this case,

(3.9) =⇒ Tn = Ω
(
n1−ϵ′ logn

)
(3.11) =⇒ Tn = Ω

(
n

(1− ϵ′) logn/2− log δn

)
.

The proof is complete by noticing that Tn = Ω
(

n
logn

)
is sufficient for the cases in the two

regimes.

3.5 Proof of the Combinatorial Lower Bound

In this section, we give the proof of combinatorial lower bound stated in Theorem 3.3.3.

For notational convenience, let us define the right-hand side of (3.5) as τ . Then, the

theorem is equivalent to the following statement:
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For any Tn ≤ τ , ∃x, x̃ ∈ {0, 1}n, ∥x−x̃∥ > kn, such that |Qx−Qx̃| ≤ 2δn.

The main idea of the proof is as follows. Consider a subset S of all confused pairs

(x, x̃) differing by at least kn elements. After each query qi, one can remove some can-

didates in S according to the response. If for every single query, the number of removed

candidates is at most N , then at least |S|
N

queries are needed. We will show that τ ≤ |S|
N
.

Therefore once Tn ≤ τ , there exists at least one ambiguous data x̃, and hence the recon-

struction is impossible. Moreover, τ is a lower bound of T ∗
n(kn, δn).

For a data set x ∈ {0, 1}n, denote an ambiguous data set as x̃. We focus on the

collection of all possible pairs of (x, x̃) which have the same one norm, and differs from

each other exactly kn’s element, that is,

∥x− x̃∥1 = kn, and ∥x∥1 = ∥x̃∥1.

Let x, x̃ ∈ {0, 1}n, and define

Skn ≜ {(x, x̃) | ∥x− x̃∥1 = kn, ∥x∥1 = ∥x̃∥1}

=

{
(x, x̃) | π(1|x− x̃) = π(−1|x− x̃) =

kn
2

}
,

where we use π(· | w) to denote the unnormalized histogram of vector w, say, π(x |

w) ≜ (number of x in w) . Define the collection of all confusion datasets after the i-th

query :

Vi ≜ { (x, x̃) ∈ Skn | |qi · (x− x̃)| ≤ 2δn } .

As long as

Tn <
|Skn |

maxi∈{1,...,Tn} |V c
i |
, (3.12)

(with a slight abuse of notation, let V c
i = V c

i ∩ Skn), we have

|Skn | > Tn max
i∈{1,...,Tn}

|V c
i | ≥

Tn∑
i=1

|V c
i | ≥

∣∣∣∣∣
Tn∪
i=1

V c
i

∣∣∣∣∣
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due to union bound. Notice that

|
Tn∪
i=1

V c
i | < |Skn| ⇐⇒

Tn∪
i=1

V c
i ̸= Skn ⇐⇒

Tn∩
i=1

Vi ̸= ∅,

which implies that there exists at least one pair of confusion data sets (x, x̃) ∈ Skn after

Tn independent queries. To complete the proof, all we need is to the following claim:

Claim 3.5.1

τ ≤ |Skn|
maxi∈{1,...,Tn} |V c

i |
.

Proof. First, we introduce

T1 ≜ {j |x̃j = 0, xj = 1}, T2 ≜ {j |x̃j = 1, xj = 0}.

Note that suppose (x, x̃) ∈ Skn , then |T1| = |T2| = kn/2 due to the fact ∥x∥1 = ∥x̃∥1,

and ∥x− x̃∥1 = kn. Then obviously we have

|Skn | =
(

n

kn/2

)(
n− kn/2

kn/2

)
2n−kn . (3.13)

Let the queried subset corresponding to q be S. The confusion events {|qx − qx̃| ≤

2δn} happen if and only if

∣∣|S ∩ T1| − |S ∩ T2|
∣∣ ≤ 2δn. (3.14)

Therefore, to upper bound |V c
i |, we have

max
i

|V c
i | ≤ max

q
| { (x, x̃) ∈ Skn | |q · (x− x̃)| > 2δn } |

= max
S⊂[n]

∣∣ {(x, x̃) ∈ Skn
∣∣||S ∩ T1| − |S ∩ T2|| > 2δn

} ∣∣ (3.15)

By symmetry, it is intuitive that the maximum is attained when |S| = n
2
(we also give
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a rigorous proof in Appendix, see Lemma D.1), and thus (3.15) is equal to

∣∣ {(x, x̃) ∈ Skn |||S ∩ T1| − |S ∩ T2|| > 2δn}

=

∣∣∣∣∣ ∪
δ>2δn

{(x, x̃) ∈ Skn | ||S ∩ T1| − |S ∩ T2|| = δ}

∣∣∣∣∣
=2n−kn+1

kn/2∑
α=0

α∑
δ=2δn

(
n/2

α

)(
n/2

kn/2− α

)(
n/2− α

α− δ

)(
n/2− kn/2 + α

kn/2 + δ − α

)
(3.16)

Combining (3.13) and (3.16), we obtain

|Skn |
maxi∈{1,...,Tn} |V c

i |

≥

(
n

kn/2

)(
n−kn/2
kn/2

)
2
∑kn/2

α=0

∑α
δ=2δn

(
n/2
α

)(
n/2−kn/2
kn/2−α

)(
n/2−α
α−δ

)(
n/2−kn/2+α
kn/2+δ−α

)
=

(
n
n
2

)
2
∑kn/2

α=2δn

(
kn/2
α

)∑α
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ

) = τ, (3.17)

where (3.17) is due to direct calculation of binomial coefficient. This proves our claim.

3.6 Extension

We close this part by briefly explaining how to extend our results to the general case

|A| = d. Following the formulation in [43], the data set can be modeled by a ma-

trix X ∈ {0, 1}n×d, and the response Y ∈ {0, 1, ..., n}Tn×d. To prove the achievability

part, we notice that the probability of error Pf (X; kn, δn) (w.r.t Q) is upper bounded by

Pf (x; kn, δn); here we abuse the notation, denoting x ∈ {0, 1}n for some column of X.

Hence, Theorem 3.3.1 also holds for d being constant with respect to n.

On the other hand, suppose X and X̃ are two data sets with Hamming distance greater

than kn. Then, there exists some column of X, X̃, say, x, x̃, such that ddata(x, x̃) ≥ kn/d.

Therefore, the converse results in Therem 3.3.2, 3.3.3, and 3.3.4 hold for k′n =
(
kn
d

)
. In

particular, as long as d is a constant with respect to n, the asymptotic behavior remains the

same.
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Part II

Anonymous Hypothesis Testing
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Chapter 4

Anonymous Hypothesis Testing :

Optimal Decision Rules and Type-II

Error Exponents

4.1 Previous Work

As introduced in Chapter 1, in order to be consistent with the previous literatures, we

use languages and notations from wireless sensor networks, where the term sensors and

observations represent crowds and responses, as stated in previous context. After all,

the essence of the two problems are indeed identical. In the following we briefly review

previous works on distributed detection and wireless sensor networks.

Decentralized detection is a classical topic, and attracts extensive attention in recent

years due to its application in wireless sensor networks. See, for example, [39, 40, 38,

41]. Most works in decentralized detection are focused on finding optimal local decision

function in both Neyman-Pearson and Bayesian regime. Under some assumptios on the

distribution of a given hypothesis, optimal design criteria of local decision function and

the decision rule at the fusion center are given. Unlike the anonymous setting considered

in our work, the above-mentioned classical works assume fusion centers, as well as the

local sensors, have perfect knowledge about the joint distribution, and hence the decision
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rules are designed according to it. This is termed an “informed” setting in our paper and

is used as a baseline to compare with and see the price of anonymity. On the other hand,

in our setting, the fusion center collects observations without knowing the exact index of

each one, and thus the problem is formulated into a composite hypothesis testing problem.

Composite hypothesis testing is a long-standing problem in statistics, and is notori-

ously difficult to find an optimal test. In general, the uniform most powerful (UMP)

test does not exist, see, for example, Section 8.3 in [21]. Even if we relax the perfor-

mance evaluation to the minimax regime, the general form of the optimal test is still un-

known, except for some special case. For example, [24] considered the case that the com-

posite hypothesis class Hθ is formed by all ϵ-contaminated distributions of Pθ, that is,

{(1− ϵ)Pθ + ϵQ | ∀ possible distributions Q}. Under this structure, Huber showed that a

censored version of likelihood ratio test is optimal in the minimax regime. Other works

such as [22, 44] followed the idea of Hoeffding’s test [22] and proposed an universal

asymptotically optimal test when the null hypothesis is simple. Meanwhile, in our set-

ting, neither the parameter space of the considered distributions is continuous, nor the null

hypothesis is simple, making their approaches hard to extend. Another common test for

composite hypothesis testing is the generalized likelihood ratio test (GLRT). The optimal-

ity of GLRT is guaranteed under some circumstances, see, for example, [45]. However,

the results in [45] hold only for simple null and composite alternative. In contrast, our

result indicates that GLRT is not optimal in our setting.

The concept of Byzantine attack can be traced back to [28] (known as the “Byzan-

tine Generals Problem”), in which reliability of a computer system with malfunctioned

components is studied. After that, Byzantine model is developed and generalized by sev-

eral research areas, especially in communication security. For example, the distributed

detection with Byzantine attack is studied under the Neyman-Pearson formulation in [30]

and under the Bayesian setting in [26]. In their settings, each sensor is assumed to be

compromised with probability α, so the observation turns out to be drawn identically and

independently from an mixture distribution, making the hypothesis testing problem sim-

ple, and thus Neyman-Pearson lemma can be applied. In contrast, in our work we assume
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the number of Byzantine sensors is fixed and is αn, where n is the total number of sen-

sors, and thus the problem falls into a composite hypothesis testing instead of the mixture

setting.

This work is presented in part at ISIT 2018. In the conference version [9], upper and

lower bounds on the type-II error exponent were given, where the lower bound (achievabil-

ity) is based on an modified version of Hoeffding’s test, and the upper bound (converse) is

derived by relaxing the original problem into a simple hypothesis testing. In this journal

version, we show that the achievability bound in the conference version is indeed tight,

closing the gap between the upper and lower bounds.

The rest of this chapter is organized as follows. In Section 4.2, we formulate the

composite hypothesis testing problem for anonymous heterogeneous distributed detection

and recap some background knowledge. In Section 4.3, the main results are provided,

where the proofs are delegated to Section 4.4 and 4.5.

4.2 Problem Formulation

4.2.1 Problem Setup

Following the description of the setting in Chapter 1, let us formulate the composite hy-

pothesis testing problem. Let σ(i) denote the label of the group that sensor i belongs to.

This labeling σ(·), however, is not revealed to the fusion center. Hence, the fusion center

needs to consider all
(

n
n1,...,nK

)
possible σ : {1, ..., n} → {1, ..., K} satisfying

|{i | σ(i) = k}| = nk, ∀ k = 1, ..., K, (4.1)

and decides whether the hidden θ is 0 or 1. For notational convenience, let ν denote the

vector [n1 ... nK ]
⊺, and let Sn,ν denote the collection of all labelings satisfying (4.1).

Hence, the fusion center is faced with the following composite hypothesis testing prob-
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lem, where the goal is to infer the parameter θ:

Hθ : X
n ∼ Pθ;σ ≜

∏n
i=1 Pθ;σ(i), for some σ ∈ Sn,ν .

As mentioned in Chapter 1, throughput the paper we consider binary hypothesis testing,

that is, θ ∈ {0, 1}.

Let each single observation take values from some measurable space (X ,F), where

F is a σ-algebra on X . Hence Pθ;k ∈ PX for all θ ∈ {0, 1} and k ∈ {1, ..., K}, where PX

denotes the collection of all possible distributions over (X ,F). The vector observation

xn is defined on the space (X n,F⊗n), where F⊗n is the tensor product σ-algebra of F ,

that is, the smallest σ-algebra contains the following collection of events:

{E1 × E2 × · · · × En | Ei ∈ F} .

A (randomized) test is a measurable function ϕ : (X n,F⊗n) → ([0, 1],B), where B

denotes the Borel σ-field on R. The worst-case type-I and type-II error probabilities of a

decision rule ϕ are defined as

PF
(n)(ϕ) ≜ max

σ∈Sn,ν

EP0;σ [ϕ(X
n)] (Type I)

PM
(n)(ϕ) ≜ max

σ∈Sn,ν

EP1;σ [1− ϕ(Xn)] (Type II).

Our focus is on the Neyman-Pearson setting: find a decision rule ϕ satisfyingPF
(n)(ϕ) ≤ ϵ

such that PM
(n)(ϕ) is minimized. Let β(n)(ϵ,ν) denote the minimum type-II error proba-

bility.

For the asymptotic regime, we assume that the ratio nk

n
→ αk as n → ∞ for all k =

1, ..., K, and
∑K

k=1 αk = 1. We aim to explore if β(n)(ϵ,ν) decays exponentially fast as

n → ∞, and characterize the corresponding error exponent. For notational convenience,

we define upper and lower bounds on the exponent:

E
∗
(ϵ,α) ≜ lim supn→∞

{
− 1
n
log2 β(n)(ϵ,ν)

}
,
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E∗(ϵ,α) ≜ lim infn→∞
{
− 1
n
log2 β(n)(ϵ,ν)

}
,

where in taking the limits, we assume that limn→∞
nk

n
= αk, for all k = 1, ..., K. If the

upper and lower bound match, we simply denote it as E∗(ϵ,α).

Remark 4.2.1 The original distributed detection problem [40, 39, 41] involves local de-

cision functions at the sensors to address the limited communication between each sensor

and the fusion center. In order to focus on the impact of anonymity, we first absorb them

into the distributions {Pθ;k : k = 1, ..., K} because they are symbol-by-symbol maps.

Later, we will discuss how to find the best local decision functions according to the char-

acterized error exponent.

4.2.2 Notations

Let us introduce notations that will be used throughout this paper.

• n denotes the total number of observations, andK denotes the number of groups of

sensors.

• ν ≜ [n1 ... nK ]
⊺ denotes the number of sensors in the K groups. That is, nk ≥ 0,

nk ∈ Z, and
∑K

k=1 nk = n.

• α ≜ [α1 ... αK ]
⊺ denotes the fraction of each group of sensors in all sensors in the

asymptotic regime. That is, αk ≥ 0, and
∑K

k=1 αk = 1.

• σ : {1, ..., n} → {1, ..., K} is the labeling function which assigns the index of each

sensor to a group. We also denote the collection of indices of sensors in group k as

Ik = σ−1(k) ≜ {i | σ(i) = k} . (4.2)

• Let Sn,ν be the collection of all σ satisfying (4.2). We also use Sn to denote the

collection of length-n permutations:

Sn ≜
{
τ : {1, 2, ..., n} 1−1→ {1, 2, ..., n}

}
.
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Note that the cardinalities of the two sets are

|Sn,ν | =
(

n

n1, n2, ..., nK

)
, |Sn| = n!.

• We usually write Pθ as the vector of {Pθ;k}:

Pθ ≜



Pθ;1

Pθ;2
...

Pθ;K


.

4.3 Main Results

Asmentioned in Section 4.2, the observations come from themeasurable space (X n,F⊗n).

Throughout the rest of the paper, we assume that X is a totally ordered set, and F⊗n sat-

isfies the following two assumptions:

1. F⊗n contains the following set:

X̃ n ≜ {(x1, x2, ..., xn) | x1 ≥ x2 ≥ ... ≥ xn} . (4.3)

2. F⊗n is closed under permutation. That is, ifA ∈ F⊗n, for any length-n permutation

τ : {1, ..., n} → {1, ..., n},

Aτ ≜
{(
xπ(1), ..., xπ(n)

)
| (x1, ..., xn) ∈ A

}
∈ F . (4.4)

Remark 4.3.1 We assume that X is a totally ordered set in order to set the condition

such that X̃ is measurable. The purpose to require X̃ to be measurable is to preserve the

measurability of the ordering map Π(·), as later defined in Definition 4.4.1. In general,

if X is not totally ordered, we can still require the collection of representatives in the

equivalent classes induced byΠ−1 to be measurable. However, the regularity assumptions

on F⊗ need to be carefully concerned in that case.
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Remark 4.3.2 The second assumption always holds for tensor σ-fields. The first assump-

tion typically holds too. For example, if X is finite, we can simply choose F as the power

set 2X , and if X ⊆ R, we can choose F as the Borel σ-field. In particular, for X being

a finite set, it is straightforward to define a total order over it, and hence it is a totally

ordered set. Moreover, the above two assumptions are automatically satisfied.

4.3.1 Main Contributions

Our first contribution is the characterization of the optimal test:

Theorem 4.3.1 (Optimal Test) Define the mixture likelihood ratio ℓ(xn):

ℓ(xn) ≜
∑

σ∈Sn,ν
P1;σ(x

n)∑
σ∈Sn,ν

P0;σ(xn)
. (4.5)

SupposeF⊗n satisfies the two assumptions (4.3), (4.4). Then an optimal tests ϕ∗(xn) takes

the following form:

ϕ∗(xn) =


1, if ℓ(xn) > τ

γ, if ℓ(xn) = τ

0, if ℓ(xn) < τ.

(4.6)

That is, for any test ϕ, we have

PF(ϕ) ≤ PF(ϕ
∗) ⇒ PM(ϕ) ≥ PM(ϕ∗).

Remark 4.3.3 We see that the optimal test, MLRT, is the likelihood ratio test between two

uniform mixture distributions

1

|Sn,ν |
∑
σ∈Sn,ν

Pθ;σ, θ ∈ {0, 1}.

Interestingly, the optimality of MLRT indicates that the widely used decision rule, gener-

alized likelihood ratio test (GLRT), which is defined as the randomized thresholded test
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according to the following likelihood ratio

ℓGLRT(x
n) ≜

supσ∈Sn,ν
P1;σ(x

n)

supσ∈Sn,ν
P0;σ(xn)

,

is strictly sub-optimal in the anonymous hypothesis testing problem.

Sketch of proof. The proof consists of two steps. In the first step, we introduce sym-

metric tests (as later defined in Definition 4.4.2), which do not depend on the order of the

observations. Then, we show that among all symmetric tests, (4.6) is optimal. The key is

to reduce the original composite hypothesis testing problem into a simple one through the

ordering map Π(xn) in Definition 4.4.1, and then apply Neyman-Pearson lemma.

In the second step, we prove that for any test ψ, one can always symmetrize it and

construct a symmetric one ϕ which is as good as ψ, so (4.6) is optimal among all tests.

However, ψ is constructed by assigning values on each equivalence classes introduced by

the ordering map Π(·), so the measurability of ψ need to be carefully examined. For the

detailed proof, please refer to Section 4.4.

Our second result specifies the exponent of type-II error in Neyman-Pearson formula-

tion, which does not depend on the type-I error probability ϵ:

Theorem 4.3.2 (Asymptotic Behavior) Let us consider the case |X | <∞, The exponent

of type-II error probability is characterized as follows.

E∗(ϵ,α) = min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P1;k)

subject to α⊺U = α⊺P0.

(4.7)

Remark 4.3.4 A standard way to derive the exponent of type-II error probability is to

identify the acceptance region (ofH0) of the optimal test (4.6) as an large-deviation event

underH1, and further apply a strong converse lemma to obtain a bound. However, notice

that the mixture measure,
∑

σ Pθ;σ, θ ∈ {0, 1}, cannot be factorized into a product form,

which makes it hard to single-letterize. Instead, if we add an additional assumption that

X is finite, then we can utilize method of types, such as Sanov’s theorem, to circumvent

the difficulties.
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Sketch of proof. For the achievability part, we propose a sub-optimal test based on

Hoeffding’s result [22], in which we accept observations xn satisfyingD (Πxn ∥M0(α)) ≤

ϵ for some threshold ϵ. We apply tools in method of types to bound the type-I and type-II

error probabilities, showing that (4.7) is achievable.

For the converse part, given an arbitrary test, we define its acceptance region as A (if

the given test is randomized, we can round the test by 1/2 and make it determinstic, that

is, we acceptH1 if ϕ(xn) > 1/2) and consider another high-probability set B. We analyze

the probability of P1;σ {A ∩ B}, and show that the exponent cannot be greater than (4.7),

which concludes the converse part. For the detailed proof, please refer to Section 4.5.

Finally, we give a structural result of the error exponent.

Proposition 4.3.1 For the case |X | <∞, the type-II error exponent E∗(ϵ,α) as charac-

terized in Theorem 4.3.2 only depends on α. Moreover, it is a convex function of α.

Proof. See Appendix B.1.

4.3.2 Numerical Evaluations

To quantify the price of anonymity, note that when the sensors are not anonymous (termed

the “informed” setting), it becomes a simple hypothesis testing problem, and the error ex-

ponent of the type-II probability of error in the Neyman-Pearson setting is straightforward

to derive:

E∗
Informed(ϵ,α) =

∑K
k=1 αkD (P0;k ∥P1;k) .

For ease of illustration, in the following we restrict to the special case of binary al-

phabet, that is, |X | = 2, and K = 2 groups. Let Pθ;1 = Ber(pθ) and Pθ;2 = Ber(qθ),

for θ = 0, 1, where Ber(p) is the Bernoulli distribution with parameter p. Since there are

only two groups, we set α ≡
[
1− α α

]⊺
. Numerical examples are given in Figure 4.1

to illustrate the price of anonymity versus the mixing parameter α. In general, anonymity

may cause significant performance loss. In certain regimes, the type-II error exponent can

even be pushed to zero.
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Figure 4.1: Price of anonymity

4.3.3 Distributed Detection with Byzantine Attacks

Let us apply the results to distributed detection under Byzantine attacks, where the sensors

are partitioned into two groups. One group consists of n(1− α) honest sensors reporting

true i.i.d. observations, while the other consists of nα Byzantine sensors reporting fake

i.i.d. observations. Here we again neglect the local decision function and assume that

each sensor can report its observation to the fusion center. The true observations follow Pθ

i.i.d. across honest sensors, while the compromised ones followQθ i.i.d. across Byzantine

sensors, for θ = 0, 1. In general, Qθ is unknown to the fusion center, but in terms of error

exponent, one can find the least favorable pairQ0, Q1 which minimize the error exponent.

Hence, our results can be applied here and arrive the worst-case type-II error exponent as

follows:

min
Q0,Q1,U,V ∈PX

(1− α)D (U ∥P1) + αD (V ∥Q1)

subject to (1− α)U + αV = (1− α)P0 + αQ0.

(4.8)

In [30], it assumes that each sensor can be compromised with probability α, and hence

it becomes a homogeneous distributed detection problem, where the observation of each

sensor follows a mixture distribution (1−α)Pθ+αQθ under hypothesis θ, i.i.d. across all

sensors. The worst-case exponent of type-II error probability, as derived in [30], is hence

min
Q0,Q1∈PX

D ((1− α)P0 + αQ0 ∥(1− α)P1 + αQ1) . (4.9)
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We see that the achievable type-II error exponent (4.8) in our setting is always greater

than that in the i.i.d. scenario (4.9) (and is strictly larger for some α) due to the convexity

of KL divergence. This implies the i.i.d. mixture model [30] might be too pessimistic.

Figure 4.2 shows a numerical evaluation.
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Figure 4.2: Comparison between i.i.d. and our setting

4.4 Proof of Theorem 4.3.1

Before proving Theorem 4.3.1, let us introduce some definitions that help the exposition.

Definition 4.4.1 (Ordering Map) The ordering map Π(·) : (X n,F⊗n) →
(
X̃ n, F̃

)
,

where X̃ n is from (4.3) and F̃ ≜ F⊗n ∩ X̃ n, is defined as follows:

Π(xn) ≜ (xi1 , xi2 , ..., xin), such that xi1 ≥ xi2 ≥ ... ≥ xin .

The measurability of Π is easy to check.

Remark 4.4.1 If |X | < ∞, the mapping Π maps a sample xn to its type, and the space

X̃ n is equivalent to PX .

Remark 4.4.2 We will use Π−1 to denote the pre-image of Π. That is, for all Ẽ ⊆ X̃ n,

Π−1
(
Ẽ
)
≜
{
xn ∈ X n | Π(xn) ∈ Ẽ

}
.

Notice that the measurability of Π implies for any Ẽ ∈ F̃ , we have Π−1
(
Ẽ
)
∈ F⊗n.
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Definition 4.4.2 (Symmetric Test) We say a test ϕ(xn) is symmetric, if it is σ(Π(Xn))-

measurable, that is, it can be represented as a composition

ϕ(xn) = ϕ̃ ◦ Π(xn),

for some measurable function ϕ̃ : X̃ n → [0, 1]. This implies the test ϕ maps a sequence of

observations xn and all its permutations to the same value.

Lemma 4.4.1 Among all symmetric test, ϕ∗(xn), as defined in (4.6), is optimal.

proof of Lemma 4.4.1. To show the optimality of ϕ∗, we first transform the original

composite hypothesis testing problem to another one in the auxiliary space X̃ n through

the ordering mapping Π(·), which turns out to be a simple hypothesis testing problem.

Hence, applying Neyman-Pearson lemma, we obtain the optimal test. See Figure 4.3 for

illustration of the relation between the original space and the auxiliary space.

(
Xn,F⊗n

)
(
X̃n, F̃

)

(R,B)

φ(·)

Π(·)

φ̃(·)

Figure 4.3: Illustration of the auxiliary space

Part 1 First, we claim that for all σ ∈ Sn,ν , the probability measure P0;σ ◦ Π−1, defined

on (X̃ n, F̃), does not depend on σ anymore. Thus we can define the probability measure

P̃0 ≜ P0;σ ◦ Π−1, such that for all σ,

(
P0;σ,F⊗n,X n

) Π(·)−→
(
P̃0, F̃ , X̃ n

)
.

This claim is quite intuitive, since the labeling σ corresponds to the order of observations,

and the ordering map removes the order.
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To show this claim, we first observe that for all E ∈ F̃ , its pre-image

Π−1(E) =
∪
τ∈Sn

Eτ , (4.10)

where Eτ ≜
{
(xτ(1), ..., xτ(n)) | (x1, ..., xn) ∈ E

}
. Therefore, for any two σ, σ′ ∈ Sn,ν , we

can write σ′ = π ◦ σ for some π ∈ Sn, and thus have

P0;σ ◦ Π−1 {E} =P0;σ

{ ∪
τ∈Sn

Eτ

}
(a)
= P0;σ

{ ∪
τ∈Sn

Eτ◦π

}

=P0;π◦σ

{ ∪
τ∈Sn

Eτ

}
= P0;σ′ ◦ Π−1 {E} ,

where the equality (a) holds due to the following fact:

∀π ∈ Sn, Sn ◦ π ≜ {τ ◦ π | τ ∈ Sn} = Sn.

Following the same argument, P̃1 ≜ P1;σ ◦ Π−1 does not depend on σ either.

Part 2 Second, let us we consider an auxiliary hypothesis testing problem on X̃ n:


H̃0 : Z ∼ P̃0

H̃1 : Z ∼ P̃1,

(4.11)

and let ϕ̃ : X̃ n → [0, 1] be a test with type-I and type-II error probabilities as follows:


PF(ϕ̃) ≜ EP̃0

[
ϕ̃(Z)

]
PM(ϕ̃) ≜ EP̃1

[
1− ϕ̃(Z)

]
.

We claim that for any symmetric test ϕ(xn) = ϕ̃ (Π(xn)) as defined in Definition 4.4.2,

the following holds: 
PF(ϕ̃) = PF(ϕ)

PM(ϕ̃) = PM(ϕ).
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To show this, note that a direct calculation gives

PF(ϕ) = max
σ

EP0;σ [ϕ(X
n)]

= max
σ

EP0;σ

[
ϕ̃ (Π(Xn))

]
= max

σ

∫
ϕ̃ (Π(xn))P0;σ(dx

n)

= max
σ

∫
ϕ̃ (z)P0;σ(Π

−1(dz))

= EP̃0

[
ϕ̃(Z)

]
= PF(ϕ̃).

For the same reason, PM(ϕ) = PM(ϕ̃). Therefore, for any symmetric test on X n, the

corresponding ϕ̃ has exactly the same type-I and type-II error probability. Notice that the

auxiliary hypothesis testing problem (4.11) is simple, so by Neyman-Pearson lemma, we

have readily seen that the optimal symmetric test on the original problem should be

ϕ∗(xn) =


1, if ℓ′(xn) > τ

γ, if ℓ′(xn) = τ

0, if ℓ′(xn) < τ,

where ℓ′(xn) is defined as

ℓ′(xn) =
P̃1 (Π(x

n))

P̃0 (Π(xn))
=

P1;σ {Π−1 (Π(xn))}
P0;σ {Π−1 (Π(xn))]

.

Part 3 Finally, we show that ℓ′(xn) is indeed the mixture likelihood ratio ℓ(xn), as defined

in (4.5). With a slight abuse of notation, letΠxn ≜ Π−1 (Π(xn)) =
{
xτ(1), ..., xτ(n) | τ ∈ Sn

}
.

In words, Πxn is the collection of xn and all its permutations. We observe that

P1;σ

{
Π−1 (Π(xn))

}
=

∑
yn∈Πxn

P1;σ (y
n)

(a)
=

(∑
τ∈Sn

P1;σ (τ(x
n))

)
c1(x

n)
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(b)
=

 ∑
σ′∈Sn,ν

P1;σ′ (xn)

 c1(x
n)c2(σ).

The constant c1(xn) in (a) is due to the fact that xn = (x1, ..., xn) might not be all

distinct, so summing over the set {τ(xn) | τ ∈ Sn} may count an element yn ∈ Πxn

multiple times. Note that if xn are all distinct, then c1(xn) = 1. (b) holds because

P1;σ(τ(x
n)) = P1;σ◦τ (x

n) and Sn,ν = Sn,ν ◦ τ ≜ {σ ◦ τ | σ ∈ Sn,ν}. Again, the sum-

mation counts σ repeatedly, so we normalize by the constant c2(σ). Following the same

reason,

P0;σ

{
Π−1 (Π(xn))

}
=

 ∑
σ′∈Sn,ν

P0;σ′ (xn)

 c1(x
n)c2(σ).

Hence,

ℓ′(xn) =
P1;σ {Π−1 (Π(xn))}
P0;σ {Π−1 (Π(xn))}

=

(∑
σ′∈Sn,ν

P1;σ′ (xn)
)
c1(x

n)c2(σ)(∑
σ′∈Sn,ν

P0;σ′ (xn)
)
c1(xn)c2(σ)

=

∑
σ P1;σ(x

n)∑
σ P0;σ(xn)

= ℓ(xn),

which establishes the claim.

Lemma 4.4.2 For any general (measurable) test ψ(xn) : X n → [0, 1], there exists a

symmetric test ϕ(xn) whose performance is not worse than ψ. That is,


PF(ϕ) ≤ PF(ψ)

PM(ϕ) ≤ PM(ψ).

(4.12)

proof of Lemma 4.4.2. With a slight abuse of notation, let τ(xn) denote the coordinate-

permutation function with respect to τ ∈ Sn, i.e. τ(xn) = (xτ(1), ..., xτ(n)). Then we
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construct ϕ(xn) as follows:

ϕ(xn) ≜ 1

n!

∑
τ∈Sn

ψ ◦ τ(xn).

We claim the following two facts:

1. ϕ(xn) is symmetric, and thus can be written as ϕ̃ ◦ Π(xn) for some F̃-measurable

ϕ̃.

2. (4.12) holds for the constructed ϕ.

Part 1 To see that ϕ(xn) = ϕ̃ ◦ Π(xn), we observe that for any yn, zn ∈ Π−1(x̃n), there

exists a permutation π ∈ Sn such that yn = π(zn). Hence it suffices to verify that for all

π ∈ Sn, ϕ(xn) = ϕ(π(xn)).

ϕ(π(xn)) =
1

n!

∑
τ∈Sn

ψ ◦ τ (π(xn))

=
1

n!

∑
τ∈Sn

ψ ◦ τ ◦ π(xn)

(a)
=

1

n!

∑
τ ′∈Sn

ψ ◦ τ ′ (xn) = ϕ(xn).

The equality (a) holds due to the fact that

Sn ◦ π ≜ {τ ◦ π | τ ∈ Sn} = Sn.

Therefore, ϕ(xn) can be decomposed into ϕ̃ ◦ Π(xn).

Next, we check the measurability of ϕ̃. Notice that ϕ is F⊗-measurable, since both

ψ and τ are measurable. The measurability of τ follows from the τ -permuted closedness

assumption of F⊗n:

∀A ∈ F⊗n,Aτ ≜ {τ(xn) | xn ∈ A} ∈ F⊗n.

54



Observe that for all Borel-measurable set B, we have

ϕ−1 {B} = Π−1
{
ϕ̃−1 {B}

}
∈ F⊗n ⇔

∪
τ∈Sn

Eτ ∈ F⊗n,

where we use E to denote event ϕ̃−1 {B}, and Eτ to denote the τ -permuted event of E , as

defined in (4.4). Notice here we use the fact given by (4.10). Therefore it suffices to check

∀E ⊆ X̃ n,
∪
τ∈Sn

Eτ ∈ F⊗n ⇒ E ∈ F⊗n ∩ X̃ n = F̃ .

We claim that indeed, { ∪
τ∈Sn

Eτ

}
∩ X̃ n = E ,

for every E ⊆ X̃ n. This is because

1. Since E ⊆ X̃ n, we have E = E ∩ X̃ n ⊆
{∪

τ∈Sn
Eτ
}
∩ X̃ n.

2. For any τ and for any xn ∈ Eτ ∩ X̃ n, xn ∈ E . Hence, ∀τ ∈ Sn, Eτ ∩ X̃ n ⊆ E , that

is,
{∪

τ∈Sn
Eτ
}
∩ X̃ n ⊆ E .

Hence, ∪
τ∈Sn

Eτ ∈ F⊗n =⇒ E =

{ ∪
τ∈Sn

Eτ

}
∩ X̃ n ∈ F⊗n ∩ X̃ n = F̃ ,

showing that ϕ̃ is F̃−measurable.

Part 2 We show that ϕ(xn) cannot be worse than ψ(xn). Observe that for all τ ∈ Sn, we

have

PF(ψ ◦ τ) = max
σ∈Sn,ν

EP0;σ [ψ (τ(Xn))] = max
σ∈Sn,ν

EP0;σ◦τ−1 [ψ(X
n)]

= max
σ′∈Sn,ν

EP0;σ′ [ψ(X
n)] = PF(ψ).

Again, the third equality holds due to the fact

Sn,ν ◦ τ−1 ≜
{
σ ◦ τ−1 | σ ∈ Sn,ν

}
= Sn,ν .
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Therefore, we have

PF(ϕ) =max
σ

EP0;σ

[
1

n!

∑
τ∈Sn

ψ ◦ τ(Xn)

]

≤ 1

n!

∑
τ∈Sn

max
σ

EP0;σ [ψ ◦ τ(Xn)]

=
1

n!

∑
τ∈Sn

PF(ψ ◦ τ) = PF(ψ).

Following the same argument, we obtain PM(ϕ) ≤ PM(ψ), and the proof completes.

Finally, the proof of Theorem 4.3.1 directly follows fromLemma 4.4.1 and Lemma 4.4.2.

Proof of Theorem 4.3.1. From Lemma 4.4.2, we only need to consider symmetric tests.

From Lemma 4.4.1, we see that the optimal test among all symmetric tests is the mixture

likelihood test, as defined in (4.6). This establishes Theorem 4.3.1.

Remark 4.4.3 Notice that in the above proof, we do not make use of assumptions on the

distribution of Xn, such as independence. Indeed, the proof indicates that for the anony-

mous composite hypothesis testing problem, under the minimax criterion (i.e. to minimize

the worst case error), we should always design tests based on the empirical distribution of

Xn (i.e. as a function of Π(xn)). This principle also holds for other statistical inference

problems, such asM -ary hypothesis testing.

4.5 Proof of Theorem 4.3.2

For the case |X | < ∞, the auxiliary space X̃ is equivalent to the space of all probabil-

ity measures on X , that is, PX , and the mapping Π(xn) maps a sequence of samples to

its type Πxn . According to Lemma 4.4.2, the optimal test is symmetric, which implies

that we only need to consider tests depending on the type. For tests depending only on

the empirical distribution, it is natural to view their acceptance region as a collection of

empirical distribution, that is, a (measurable) subset of PX . This motivates us to apply

Sanov’s theorem. We begin with the following generalization of Sanov’s result:
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Lemma 4.5.1 (Generalized Sanov Theorem) Let |X | <∞, andΓ ⊆ PX be a collection

of distributions on X . Then for all σ ∈ Sn,ν and θ ∈ {0, 1}, we have

− inf
[U1 ... UK ]⊺∈(PX )K

α⊺U∈int Γ

K∑
k=1

αkD (Uk ∥Pθ;k) (4.13)

≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} (4.14)

≤ lim sup
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} (4.15)

≤− inf
[U1 ... UK ]⊺∈(PX )K

α⊺U∈cl Γ

K∑
k=1

αkD (Uk ∥Pθ;k) , (4.16)

where in taking the limits, we assume that limn→∞
nk

n
= αk, for all k = 1, ..., K. In

particular, if the infimum in the right-hand side is equal to the infimum in the left-hand

side, then we have

lim
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} = − inf

[U1 ... UK ]⊺∈(PX )K

α⊺U∈cl Γ

∑
k

αkD (Uk ∥Pθ;k) .

The proof is a direct extension of Lemma 2.1.3, except that we replace the i.i.d. measure

with the product of independent non-identical ones, Pθ;σ. For the detailed proof, please

refer to Appendix B.2.

Motivated by the generalized Sanov Theorem, we further define the following gener-

alized divergence to measure how far from one set of distributions Q ≜ [Q1 ... QK ]
⊺ to

another set of distributions P ≜ [P1 ... PK ]
⊺:

Definition 4.5.1 Let P = [P1 ... PK ]
⊺ and Q = [Q1 ... QK ]

⊺ are both in (PX )
K . Let

α = [α1 ... αK ]
⊺ be a K-tuple probability vector. Define

Dα(P ;Q) ≜ inf
U∈(PX )K

∑K

k=1
αkD (Uk ∥Qk)

subject to α⊺U = α⊺P

. (4.17)

Thus (4.13) in Lemma 4.5.1 can be rewritten as
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− inf
α⊺U∈int Γ

Dα(U ;Pθ)

≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ}

≤ lim sup
n→∞

1

n
logPθ;σ {Πxn ∈ Γ}

≤ − inf
α⊺U∈cl Γ

Dα(U ;Pθ).

Also, the result of Theorem 4.3.2, (4.7), is equivalent to the following statement:

E∗(ϵ,α) = Dα(P0;P1).

Remark 4.5.1 Intuitively, Dα(P ;Q) measures how far between P and Q. However,

Dα(·; ·) is not a divergence, since Dα(P ;Q) = 0 does not always imply P = Q.

Notice that for any fixed Q ∈ (PX )
K , Dα(P ;Q) can be regarded as a function of P .

Moreover, this function depends only on the mixture of P , say, α⊺P . Therefore, for

notional convenience, let us use fQ(·) : PX → R ∪ {+∞} to denote this function:

fQ(T ) ≜ inf
U∈(PX )K

∑K

k=1
αkD (Uk ∥Qk)

subject to α⊺U = T

.

In other words,

fQ(α
⊺P ) = Dα(P ;Q).

Before entering the main proof of Theorem 4.3.2, let us introduce some properties of

fQ(·).

Lemma 4.5.2 Let Q ∈ (PX )
K and fQ(·) : PX → R ∪ {+∞} be defined as Defini-

tion 4.5.1 and above. Then,

1. fQ(α⊺Q) = 0
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2. The collection of all T ∈ PX such that fQ(T ) <∞, denoted as

CQ ≜ {T ∈ PX : fQ(T ) <∞} ,

is a compact, convex subset of PX .

3. fQ(T ) is a convex, continuous function of T on CQ (and by the compactness of CQ,

fQ(T ) is also uniformly continuous).

Proof of Lemma 4.5.2 can be found in Appendix B.3.

proof of Theorem 4.3.2.

Part 1 (Achievability) Let δ > 0 and consider the test :

ϕ(xn) ≜ 1{xn:D(Πxn ∥M0(α))>δ}.

Denote the acceptance region of ϕ as Γ ≜ {T ∈ PX : D (T ∥M0(α)) > δ}. Then the

exponent of type-I error probability PF(ϕ) can be bounded by

lim inf
n→∞

1

n
logEP0;σ [ϕ(X

n)]

= lim inf
n→∞

1

n
logP0;σ {Πxn ∈ Γ}

(a)
≥ inf

T∈cl Γ
fP0(T )

(b)
≥ δ,

where (a) holds by Lemma 4.5.1, and be holds due to the the convexity of KL divergence:

D (T ∥M0(α)) ≤ min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P0;k) = fP0(T )

subject to α⊺U = T

.

Notice that for any δ > 0, as n large enough, we must have

PF(ϕ) < ϵ.
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On the other hand, the exponent of type-II error probability E∗(ϵ,α) can be bounded by

lim inf
n→∞

1

n
logEP1;σ [ϕ(X

n)]

= lim inf
n→∞

1

n
logP1;σ {Xn : D (ΠXn ∥M0(α)) ≤ δ}

≥ inf
T∈cl Γc

fP1(T ), (4.18)

By Pinsker’s inequality (Theorem 6.5 in [32]), we have

cl (Γc) = {T ∈ PX : D (T ∥M0(α)) ≤ δ} ⊆
{
T ∈ PX : ∥T −M0(α)∥1 ≤

√
2δ
}
≜ B√

2δ(M0(α)),

so (4.18) can be further lower bounded by

inf
T∈cl Γc

fP1(T ) ≥ inf
T∈B√

2δ(M0(α))
fP1(T ).

Also, by the continuity (Lemma 4.5.2) of fP1(·),

inf
T∈B√

2δ(M0(α))
fP1(T ) = fP1 (M0(α)) + ∆(δ),

with

lim
δ→0

∆(δ) = 0.

Finally, since δ can be chosen arbitrarily small, we have

E∗(ϵ,α) ≥ fP1 (M0(α)) = Dα (P0;P1) . (4.19)

Part 2 (Converse) We have shown that symmetric test is optimal in Lemma 4.4.2. Hence,

in the following, it suffices to consider symmetric tests.

For an arbitrary symmetric test ψ : Pn → [0, 1] such that its type-I error probability

PF(ψ) < ϵ, we shall lower bound its type-II error probability as follows. Let A(n) ≜

{T ∈ Pn : ψ(T ) ≤ 1/2}, and recall that

P̃0 ≜ P0;σ ◦ Π−1
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is a probability measure independent of σ. Then, we have

ϵ > EP̃0
[ψ(T )] =

∑
T∈Pn

P̃0(T )ψ(T ) ≥
∑

T∈(A(n))
c

P̃0(T )ψ(T )

(a)
>

1

2

∑
T∈(A(n))

c

P̃0(T ) =
1

2

(
1− P̃0

{
A(n)

})
,

(a) holds since for all T /∈ A(n), ψ(T ) > 1/2. In other words, we have

P̃0

{
A(n)

}
> 1− 2ϵ.

On the other hand, let B(n) ≜ {T ∈ Pn | D (T ∥M0(α)) ≤ δ}. Then, according to the

analysis in type-I error probability in the achievability part, we have

P̃0

{
B(n)

}
> 1− ϵ.

Applying union bound, we see that

P̃0

{
A(n) ∩ B(n)

}
> 1− 3ϵ,

and hence for ϵ < 1
3
, A(n) ∩ B(n) is non-empty.

Let V ∗
n ∈ A(n) ∩ B(n) and define P̃1 ≜ P1;σ ◦ Π−1 (which is also independent of σ).

Again we have

PF(ψ) = EP̃1
[1− ψ(T )]

≥
∑

T∈A(n)

(1− ψ(T )) P̃1 {T}

≥ 1

2
P̃1 {V ∗

n } .

We further estimate P̃1 {V ∗
n } by

P̃1 {V ∗
n } =P1;σ {Tn(V ∗

n )}
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=
∑

Uk∈Pnk
:∑

k αkUk=V
∗
n

K∏
k=1

P⊗nk
1;k {Tnk

(Uk)}

=
∑

Uk∈Pnk
:∑

k αkUk=V
∗
n

2−
∑

k nkD(Uk ∥P1;k)

≥ max
Uk∈Pnk

:∑
k αkUk=V

∗
n

2−
∑

k nkD(Uk ∥P1;k)

=2−nD̃n ,

where

D̃n ≜ min
Uk∈Pnk

:∑
k αkUk=V

∗
n

(∑
k

nk
n
D (Uk ∥P1;k)

)
.

Notice that since V ∗
n ∈ B(n), so we have

D (V ∗
n ∥M0(α)) ≤ δ.

Since δ can be chosen arbitrarily small, as δ → 0 and n→ ∞ (with nk

n
→ αk), we have

E
∗
(ϵ,α) ≤ lim

n→∞
D̃n

= min
Uk∈PX :∑

k αkUk=M0(α)

(∑
k

αkD (Uk ∥P1;k)

)

= fP1 (M0(α))

= Dα (P0;P1) ,

which completes the proof.

4.6 Extension

Theorem 4.3.1 characterizes the optimal test in the anonymous detection problem, where

only a few conditions on the σ-field F are required. In Theorem 4.3.2, we further assume
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the alphabet X is finite, in order to apply large deviation tools based on the method of

types (see Remark 4.3.4 for discussion). However, the the optimal exponent of the type-II

error probability, given by the result of Theorem 4.3.2, depends only on the possible dis-

tributions under Hθ, and hence it is interesting to see if one can remove the assumption

that X being finite. Recall that in the proof, the main tool we employed is the general-

ized version of Sanov’s theorem (see Lemma 4.5.1), and thus the question turns out to be

whether it is possible to prove Lemma 4.5.1 without using method of types. Surprisingly,

the answer is yes if X is a Polish space (a completely separable metrizabla topological

space). If X is Polish, the space of all probability measures on X (PX ) is also Polish,

equipped with weak-topology induced by weak convergence. One can choose, for exam-

ple, Levy-Prokhorov metric on PX . The proof of standard Sanov’s Theorem on Polish X ,

however, is far more complicated than the case of finite X , see [16, 15] for detailed proof.

Lemma 4.5.1 for Polish X can be proved with similar techniques. Nevertheless, in order

not to digress further from the subject, we only present a proof for finite X in this paper.
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Chapter 5

Anonymous Hypothesis Testing :

Beyond Neyman-Pearson Regime

5.1 Problem Formulation

Unlike Neyman-Pearson formulation discussed in Chapter 4, in which we minimize the

worst-case type-II error probability, subject to the worst-case type-I error probability not

being larger than a constant ϵ. It is natural to extend the result fromChapter 4 to Chernoff’s

regime, where we aim to minimize the average probability of error:

Pe
(n)(ϕ) ≜ π0PF

(n) + π1PM
(n).

Note that π0 and π1 are the prior distributions of H0 and H1 and do not scale with n. As

suggested by Theorem 4.3.1, the optimal test is the mixture likelihood ratio test, so we

only need to specify the corresponding threshold τ . However, the mixture likelihood ratio

involves summation over Sn,ν , making the computation complexity extremely high. Even

for the case |X | <∞, the computation still takes Θ
(
n|X |) operations and thus is difficult

to implement. To break the computational barrier, we propose an asymptotically optimal

test, based on information projection, which achieves the optimal exponent of the average

probability of error. Moreover, the result can be generalized to determine the achievable
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exponent regionR, the collection of all achievable pairs of exponents:

R ≜
{
(E0, E1) | there exists a test ϕ, such that PF

(n)(ϕ) ⪯ 2−nE0 , PM
(n)(ϕ) ⪯ 2−nE1

}
,

where a sequence an ⪯ 2−nE0 means an decays to zero at the rate faster than E0 , that is,

− lim inf
n→∞

1

n
log an ≥ E0.

5.2 Main Result

5.2.1 Efficient Test

As stated in Theorem 4.3.1, the optimal test ϕ∗(xn) of the anonymous hypothesis testing

problem was showed to be the mixture likelihood ratio test(4.6):

ϕ∗(xn) =


1, if ℓ(xn) > τ

γ, if ℓ(xn) = τ

0, if ℓ(xn) < τ

where the mixture likelihood ratio ℓ′(xn) was defined in (4.5):

ℓ(xn) ≜
∑

σ P1;σ(x
n)∑

σ P0;σ(xn)
.

However, since the MLR sums over all permutations in Sn,α, the computational complex-

ity of the optimal test isΘ(nK) and thus is obviously impossible to implement. Therefore,

we propose an asymptotically optimal test based on convex programing.

Theorem 5.2.1 (Efficient Test) Recall the function fP (T ) : PX → R ∪ {+∞} defined

in Defintion 4.5.1. Consider the following test based on the function fP0(·) and fP1(·):

ϕeff(x
n) ≜


0, if fP1(Πxn) > fP0(Πxn)

1, else fP1(Πxn) ≤ fP0(Πxn).

(5.1)
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Then ϕeff is asymptotically optimal in Chernoff’s regime. That is, for all priors π0, π1, for

all tests ϕ, and for all n large enough,

− 1

n
log (Pe(ϕ)) ≤ − 1

n
log (Pe(ϕeff)) .

Remark 5.2.1 From the convexity of KL-divergence and the spacePX , the function fP (·)

is indeed the minimization of a convex function. Hence the proposed test in Theorem 5.2.1

can be computed efficiently.

5.2.2 Achievable Region: An Information Geometric Perspective

To gain more insight on the function fP (·), we can write it in a ”divergence” form, that is,

d(·, ·) : PX × PX
K → R is defined as

d(T,P ) ≜ fP (T ),

measuring the discrepancy between T and P . As the result of Theorem 4.3.2, we know

that (d(α⊺P0,P1), 0) and (d(α⊺P1,P0), 0) are two boundary points ofR, where d(·, ·) is

the pseudo-distance function defined in (4.17). In this section, we aim to characterizeR.

Let us define the function

f(β) ≜ min
F∈PX

d(F,P0)

β
+
d(F,P1)

1− β
, β ∈ [0, 1] .

Then F can be characterized by f(β):

Theorem 5.2.2 (Achievable Region) R is the region enclosed by E0 = 0, E1 = 0, and

(E0(β), E1(β)) =
(
β2 (f ′(β)(1− β)− f(β)) , (1− β)2 (βf ′(β) + f(β))

)
.

See Figure 5.1 for illustration.
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fP0(M1(α))

fP1(M0(α))

·

·

E0

E1

R

(E0(λ), E1(λ))

Figure 5.1: Illustration of achievable regionR

5.3 Proof of Theorem 5.2.1

Proof. Let us set some notations. For each P ∈ (PX )
K , we use Br(P ) ⊆ PX to denote

the r-ball centered at T with respect to fP (·):

Br(P ) ≜ {T ∈ PX | fP (T ) < r} .

By the continuity of fP (·) (from Lemma 4.5.2), Br(P ) is an open set. Then, define the

largest packing radius between P0,P1 as follows:

r∗ ≜ sup
r

{Br(P0) ∩Br(P1) = ∅} .

See Figure 5.2 for illustration.

The rest of the proof will be organized as follows: we first show that ϕeff has error

exponent at least r∗ (the achievability part):

− lim
n→∞

1

n
log (Pe(ϕeff)) ≥ r∗.

Then, we will prove that for all tests, the error exponent will be at most r∗ (the converse

part).
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·

·

PX

r∗
P0

P1

r∗

Br∗(P0)

Figure 5.2: Illustration of Br(·) and r∗

Part 1 (Achievability) Define

A ≜ {T ∈ PX | fP1(T ) ≤ fP0(T )} ,

and notice that 
PF

(n)(ϕeff) = P0;σ {Πxn ∈ A}

PM
(n)(ϕeff) = P1;σ {Πxn ∈ Ac} ,

for any arbitrary σ (recall thatϕeff depends only on the empirical distribution and therefore

is symmetrical, so the error is independent of the choice of a specific σ).

By the generalized Sanov’s theorem (Lemma 4.5.1), we see that the exponent ofPF
(n)(ϕeff)

is lower bounded by infT∈clA fP0(T ). Similarly, the exponent of PM
(n)(ϕeff) is lower

bounded by infT∈clAc fP1(T ). It is not hard to see that indeed,

inf
T∈clA

fP0(T ) = inf
T∈A

fP0(T ), (5.2)

and

inf
T∈clAc

fP1(T ) = inf
T∈Ac

fP1(T ). (5.3)

Equation (5.2) holds sinceA is a closed set (it is a pre-image of a continuous function from

a closed set), so cl A = A. For the equation (5.3), we notice that Ac is open, and hence
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the infimum of a continuous function on Ac is actually equal to the infimum on cl Ac.

Hence, it suffices to show that

inf
T∈A

fP0(T ) ≥ r∗, inf
T∈Ac

fP1(T ) ≥ r∗.

·

·

PX

P0

P1 A

Ac

Figure 5.3: Relation between A, Ac and Br∗(P0), Br∗(P1)

It is straightforward to see that Ac contains Br∗(P0) and A contains Br∗(P1), since

we must have

1. ∀T ∈ Br∗(P0), fP0(T ) < fP1(T ),

2. ∀T ∈ Br∗(P1), fP0(T ) > fP1(T ).

Otherwise Br∗(P0) intersects Br∗(P1), violating our assumption on r∗. Also notice that

A, Ac are disjoint, so

Ac ∩Br∗(P0) = A ∩ Br∗(P1) = ∅,

implying that

Ac ⊆ Br∗(P1)
c, A ⊆ Br∗(P0)

c.
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Therefore, we have


infT∈A fP0(T ) ≥ infT∈Br∗ (P0)c fP0(T ) ≥ r∗

infT∈Ac fP1(T ) ≥ infT∈Br∗ (P1)c fP1(T ) ≥ r∗,

proving the achievability part.

Part 2 (Converse) We show that for any test ϕ(n), the exponent of the average probabil-

ity of error greater than r∗ leads to contradiction. Suppose the type-I and type-II error

exponents of ϕ(n) are r1, r2 respectively, and r1 > r∗, r2 > r∗. By Lemma 4.4.2, we only

need to consider symmetric tests, that is, tests depend only on the type. Therefore, we can

write the acceptance region ofH0,H1 as
B(n)
1 =

{
Πxn : ϕ(n)(xn) = 1

}
B(n)
0 =

{
Πxn : ϕ(n)(xn) = 0

}
.

The exponents of type-I and type-II errors thus are greater then r1, r2 respectively, we have


lim inf
n→∞

{
min
T∈B(n)

1

fP0(T )

}
= r1 > r∗

lim inf
n→∞

{
min
T∈B(n)

0

fP1(T )

}
= r2 > r∗.

(5.4)

Definemin {r1, r2} = r̃, and δ ≜ (r̃ − r∗) /2 > 0. By (5.4), there existsM large enough,

such that for all n > M ,


min
T∈B(n)

1

fP0(T ) > r̃ − δ > r∗

min
T∈B(n)

0

fP1(T ) > r̃ − δ > r∗.

We further define 
B1 =

∪
n>M

B(n)
1

B0 =
∪
n>M

B(n)
0 .
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We see that

1. B0 ∪ B1 are dense in PX , since

B(n)
0 ∪ B(n)

1 = Pn,

and
∪
n>M

Pn is dense in PX . So we have

(cl B0 ∪ cl B1)
c = (cl B0)

c ∩ (cl B1)
c = ∅. (5.5)

2. By construction,


inf
T∈B1

fP0(T ) = min
T∈cl B1

fP0(T ) > r̃ − δ > r∗

inf
T∈B0

fP1(T ) = min
T∈cl B0

fP1(T ) > r̃ − δ > r∗.

(5.6)

From (5.6), we have 
B(r̃−δ)(P0) ⊆ (cl B1)

c

B(r̃−δ)(P1) ⊆ (cl B0)
c ,

and by (5.5) B(r̃−δ)(P0) ∩B(r̃−δ)(P1) = ∅. However, this violates our assumption that r∗

is the supreme of radius such that the two sets do not overlap. This proves the converse

part.

5.4 Proof of Theorem 5.2.2

proof of Theorem 5.2.2. Part 1 (Achievability) We first claim that for all β ∈ [0, 1],

there exists a test ϕ, such that

E0(ϕ)

β
+
E1(ϕ)

1− β
≥ f(β),

72



where (E0(ϕ), E1(ϕ)) are the type-I and type-II error exponents respectively:

(E0(ϕ), E1(ϕ)) =

(
− lim

n→∞

1

n
logPF

(n)(ϕ),− lim
n→∞

1

n
logPM

(n)(ϕ)

)
.

Define

F ∗ = arg min
F∈PX

d(F,P0)

β
+
d(F,P1)

1− β
,

and consider the test

ϕF ∗(xn) = 1{d(Πxn ,P1)≤d(F ∗,P1)}.

The acceptance region ofϕF ∗ is a closed ball centered atP1with radius equal to d(Πxn ,P1).

·

·

PX

P0

P1

· F ∗

Figure 5.4: Acceptance region of ϕF ∗

By Sanov’s theorem,

E1(ϕF ∗) = min
T∈Āc

1

d(T,P1) = d(F ∗,P1).

To prove the achievability, it suffices to show that

E0(ϕF ∗) = min
T∈A1

d(T,P0) = d(F ∗,P0).

Notice that minT∈A1 d(T,P0) cannot be smaller than d(F ∗,P0); otherwise there exists

73



another F̃ ∈ A1, such that

d(F̃ ,P0)

β
+
d(F̃ ,P1)

1− β
<
d(F ∗,P0)

β
+
d(F ∗,P1)

1− β
,

violating the assumption that F ∗ achieves minimum. Thus we have

min
T∈A1

d(T,P0) ≥ d(F ∗,P0).

Part 2 (Converse)

For the converse part, following the same idea in Theorem 5.2.1, we show that for all

test ϕ,
E0(ϕ)

β
+
E1(ϕ)

1− β
≤ f(β).

We prove by contradiction. Let ϕ∗ be a test such that

E0(ϕ
∗)

β
+
E1(ϕ

∗)

1− β
> f(β),

and denote the acceptance region of ϕ∗ as B. Then as Sanov’s theorem suggesting, we

have 
E0(ϕ

∗) = minT∈B d(T,P0),

E1(ϕ
∗) = minT∈Bc d(T,P1).

(5.7)

Assume that the minimum of (5.7) achieves by T ∗
0 , T

∗
1 respectively :


T ∗
1 = argminT∈B d(T,P0),

T ∗
0 = argminT∈Bc d(T,P1),

we have

d(T ∗
1 ,P0)

β
+
d(T ∗

0 ,P1)

1− β
> f(β) = min

F∈PX

d(F,P0)

β
+
d(F,P1)

1− β
. (5.8)

We claim that this cannot happen.
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Firt, notice that T ∗
0 and T ∗

1 must appears in the boundary. More percisely, we can find

a sequence T (i)
0 ∈ B, and T (i)

0 → T ∗
0 . To see this, we claim that

d((1− λ)T ∗
0 + λα⊺P1,P1) < d(T ∗

0 ,P1), ∀λ ∈ (0, 1).

This can be easily verify:

d(T0,P1) = min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P1;k)

subject to α⊺U = T ∗
0

≜
∑K

k=1
αkD (U∗

k ∥P1;k)

>
∑K

k=1
((1− λ)αkD (U∗

k ∥P1;k) + λαkD (P1;k ∥P1;k))

≥
∑K

k=1
αkD ((1− λ)U∗

k + λP1;k ∥P1;k)

≥ min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P1;k) .

subject to α⊺U = (1− λ)T ∗
0 + λα⊺P1

This implies for all λ > 0, (1 − λ)T ∗
0 + λα⊺P1 is in B (since T ∗

0 achieves minimum in

Bc). Therefore, by setting

T
(i)
0 ≜ (1− λi)T

∗
0 + λiα

⊺P1, λi → 0,

we find a sequence in B converging to T ∗
0 .

Hence, we can rewrite (5.8) as

d(T ∗
1 ,P0)

β
+
d(T ∗

0 ,P1)

1− β
= lim

i→∞

d(T ∗
1 ,P0)

β
+
d(T

(i)
0 ,P1)

1− β
.

Since both T ∗
1 and T (i)0 are in B, we must have

d(T ∗
1 ,P0)

β
+
d(T ∗

0 ,P1)

1− β
≤ min

F∈PX

d(F,P0)

β
+
d(F,P1)

1− β
,

which completes the converse.
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Part 3 (Boundary ofR)

Finally, we prove that

(
β2 (f ′(β)(1− β)− f(β)) , (1− β)2 (βf ′(β) + f(β))

)
characterizes the boundary ofR. Consider two tangential lines

·

·

E0

E1

R

Lβ :
E0

β
+

E1

1− β
= f(β)

Lβ′ :
E0

β′ +
E1

1− β′ = f(β′)·
(E0(β), E1(β))

Figure 5.5: Illustration of Lβ and Lβ′


Lβ : E0

β
+ E1

1−β′ = f(β)

Lβ′ : E0

β′ +
E1

1−β′ = f(β′).

Denote their intersection as (E0(β, β
′), E1(β, β

′)):


E1(β) =

f(β)β−f(β′)β′

β/(1−β)−β′/(1−β′)

E0(β) =
f(β)(1−β)−f(β′)(1−β′)
(1−β)/β−(1−β′)/β′

Taking β′ → β and by L’Hospital’s rule, we see that

lim
β→β′

(E0(β, β
′), E1(β, β

′)) =
(
β2 (f ′(β)(1− β)− f(β)) , (1− β)2 (βf ′(β) + f(β))

)
.
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An alternative to characterize R is to solving the information projection problem of

acceptance region defined by the optimal test. However, this approach, as well as the

boundary proposed by Theorem 5.2.2, involve complicated convex programing, and hence

the closed-form formula still remains open.
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Chapter 6

Conclusions and Future Work

In this thesis, we propose two treatments in order to address the anonymity issue in privacy-

preserving crowdsourcing.

In Part I, we study the minimum number of golden tasks (queries) required to recover

the group information of the crowds. This problem is equivalent to decoding noisy data

via pooling. The problem is cast into a linear inverse problem, where the pooled output

takes values in integer, unlike the classic group-testing problem, where the outcomes are

the “xor” of the values of the specified subset. We allow the pooled results to be perturbed

by some bounded noise with magnitude less than δn. Under the noisy setting, the exact

recover is usually impossible, and thus we aim to reconstruct the dataset partially, with

distortion less than a given threshold n. Inspired by the Shannon’s construction of channel

code, we use randomized pooling to obtain an upper bound on query complexity (the

minimum number of queries) under small noise regime δ = O(
√
δn), in which each data

will be pooled with probability 1/2. This randomized pooling scheme takes O(n/ logn)

queries, with the same complexity as noiseless setting [43]. On the other hand, we prove

the converse lower bound by packing argument, showing that the query complexity is

indeed Θ(n/ logn). Interestingly, with an innovative counting approach, we showed that

under the high noise regimeδ = Ω(δ
(1+ϵ)/2
n ), the recovery is impossible.

In Part II, we explore the anonymous detection problemwith crowds anonymity, which

is also related to the studies of wireless sensor networks. To deal with anonymity, a com-

posite hypothesis testing approach is taken. Focusing on the Neyman-Pearson setting, we
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provide an optimal test, and characterize the exponent of type-II error probability for the

case that X is finite. Unlike the settings considered in robust hypothesis testing literatures

[23, 24, 41], since the hypothesis classes considered in our framework is discrete, the least

favorable distribution might not exist. To circumvent the difficulty, we map the original

problem into an auxiliary space by employing the symmetric property of the hypothe-

sis classes, in which the composite hypothesis testing becomes a simple one. Therefore,

Neyman-Pearson lemma can be applied to obtain an optimal test, which is a randomized

threshold test based on the ratio of the uniform mixture of all the possible distributions

under H0 to the uniform mixture of those under H1. For the asymptotic regime, we ana-

lyze the type-II error exponent using method of types and show that the optimal exponent

is the minimization of linear combination of KL-divergences, with the k-th term being

D (Uk ∥P1;k) and αk being the coefficient, for k = 1, ..., K. The minimization is over

all possible distributions U1, ..., UK such that
∑K

k=1 αkUk =
∑K

k=1 αkP0;k. We further

extend our result to Chernoff’s regime, and indicate that the exponent region can be ob-

tained by solving a convex optimization problem. There are still many open problems.

For example, the closed-form expression for the exponents in asymptotic regime, even

in Neyman-Pearson formulation, are still unknown. Besides, the solution of information

projection is conjectured to have similar form like tilted-distributions, as the classical re-

sults in simple hypothesis testing suggested. In addition to hypothesis testing, it is also

interesting to investigate other statistical problem such as regression, estimation, or pattern

recognition under the anonymous setting.

Though in this thesis we concentrate on the crowdsourcing, the developed theories and

tools are not restricted to this problem but widely apply to various fields, especially when

the problems involve anonymity or privacy concern.

6.1 Future Works

One of an ambitious and challenging goal is to consider partial group recovery. IFrom

Figure 4.1, we see that in some cases, the type-II error exponent can be pushed to zero,

making reliable detection no longer possible. If each sensor is allowed to transmit a few
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bits of information to partially reveal their groups, how such partial information can im-

prove the type-II error exponent? Formally speaking, we assume that the total number of

groups is K, and each sensor can transmit L bits (with L < logK) through a noiseless

channel to the fusion center, providing partial information about the group that it belongs

to.

Unsurprisingly, the optimal strategy is the cluster-and-detect approach, that is, we first

cluster theK groups into 2L super-groups, and each sensor sends L bits to indicate which

super-groups it belongs to. Inside each super-group, we adopt the optimal anonymous

hypothesis testing, and between super-groups, the problem boils down to the equivalent

informed hypothesis testing, and hence standard likelihood ratio test can be applied there.

However, the difficulty lies in the clustering step: even the fusion center knows the dis-

tribution of each group, the optimal clustering algorithm is indeed a discrete optimization

problem and thus NP-hard. When the group number K is large enough, it is intractable

to find the optimal clustering. Nevertheless, some suboptimal algorithms suggested by

heuristic do demonstrate that this partial information can significantly ameliorate the per-

formance loss caused by anonymity. Below is a numerical example, showing the benefit

of partial information.

In the example, we assume their are totally K = 1024 (210) groups, and each group

accounts for 1/K proportion of total sensors, that is, α = [ 1
K
, ..., 1

K
]⊺. For the sensors in

the k-th group, their observations follow i.i.d. distribution Ber(θk) under H0, and follow

i.i.d. Ber(1−θk) underH1, with θk = k
K
, k = 1, ..., K. Suppose there are L bits available

for each sensor to partially inform the fusion center the group it belongs to, then as the

clustering-detection algorithm suggests, we first cluster theK groups into 2L super-groups

and then apply anonymous hypothesis testing inside each super-group. As the numerical

evaluation in Figure 6.1 illustrates, even with few bits, say, L = 1 or 2, type-II error

exponents are significantly improved.

81



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L(bits)

E(ϵ,α)

Figure 6.1: Exponents with Partial Information
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Appendix A

Proof of Lemmas in Chapter 3

A.1 proof of Theorem 3.3.2

Theorem 3.3.2 (Packing Lower Bound) Let kn ≤
(
1−ϵ
2

)
n for some ϵ > 0. Then, the

following lower bound holds:

T ∗
n(kn, δn) = Ω

(
n
(
1−Hb

(
1−ϵ
2

))
log(n+ 1)− log(4δn + 1)

)
(3.4)

Specifically, when δn = O(n
1−ϵ′
2 ), and ϵ, ϵ′ does not depend on n, then (3.4) can be further

simplified to

T ∗
n(kn, δn) = Ω (n/ logn) .

We prove Theorem 3.3.2 by packing argument.

Proof. (proof of Theorem 3.3.2)

To reconstruct x successfully, the cardinality of possible input must less than the cardi-

nality of possible output. The number of possible input (output) turns out to be a packing

problem. First, we notice the number of x̃ with distance to x less than kn is

|{x̃ ∈ {0, 1}n | ∥x̃− x∥1 ≤ kn}| =
kn∑
i=1

(
n

i

)
,

thus the total number of all possible pairs (x, x̃)with distance greater than kn to each other
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is

|{xi ∈ {0, 1}n | |xi − xj | > kn, ∀xi ̸= xj}| =
2n∑kn
i=1

(
n
i

) .
On the other hand, the total number of possible outcomes is

∣∣{0, 1, ..., n}Tn∣∣
(4δn + 1)Tn

=

(
n+ 1

4δn + 1

)Tn

To guarantee successful reconstruction, the number of possible outputs must greater than

the number of possible input, hence we have

2n∑kn
i=1

(
n
i

) ≤
(
n+ 1

4δn + 1

)Tn
(A.1)

Now, we give a bound on summation of binomial coefficient: Suppose k = pn, where

p ∈ (0, 1) does not depend on n. Then by Stirling approximation, we have

log
(
n

pn

)
= nHb (p) +O(logn),

where Hb(p) is the binary entropy function.

Tn ≥
n− log

(∑kn
i=1

(
n
i

))
log(n+ 1)− log(4δn + 1)

(A.2)

≥
n− log

(
kn
(

n
n(1−ϵ)/2

))
log(n+ 1)− log(4δn + 1)

(A.3)

=
n
(
1−Hb

(
1−ϵ
2

)
+O( logn

n
)
)

log(n+ 1)− log(4δn + 1)
, (A.4)

where (A.3) is due to
∑kn

i=1

(
n
i

)
≤ kn

(
n
kn

)
and kn ≤

(
1−ϵ
2

)
n.

Furthermore, if δn = O(n
1−ϵ′
2 ), and ϵ, ϵ′ does not depend on n, then we have

Tn = Ω

(
n

logn

)
.
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A.2 proof of Theorem 3.3.4

Theorem 3.3.4 (Impossibility of Poly(n)Query Complexity)

If both the following conditions are satisfied:

• 1
2
n ≥ kn ≥ C1n

ϵ1

• δn = Ω(k
1+ϵ2

2
n )

where ϵ1, ϵ2 ∈ (0, 1), and C1 > 0, then T ∗
n(kn, δn) is ω(np), for all p ∈ N. In words, there

does not exist querying methods with Poly(n) query complexity that can do the job.

Before we further bounding (3.5), we give two technical lemma:

Lemma A.2.1 For n ≥ 2, the following binomial bound holds:

4n√
π
2
(2n+ 1)

≤
(
2n

n

)
≤ 4n√

πn

Lemma A.2.2 For δ ≤ n/2, the following bound holds:

n/2+δ∑
k=n/2−δ

(
n

k

)
≥ 2n

(
1− 2 exp

(
−δ

2

n

))

Now, we are ready to prove Theorem 3.3.4.

Proof. (proof of Theorem 3.3.4)

We show that as long as kn = Ω(nϵ) and δn = Ω

(
k

1+ϵ′
2

n

)
, the bound given in Theo-

rem 3.3.3 is Ω(n).

From Theorem 3.3.3, we know that as long as

Tn ≤ τ =

(
n
n
2

)
2
∑kn/2

α=2δn

(
kn/2
α

)∑kn/2
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ

) , (A.5)

the data set cannot be reconstructed successfully.

Applying Lemma A.2.1, we see that

1)
(
n
n/2

)
≥ 2n√

π
2
(n+1)
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2)
(

n−kn
n/2−2α+δ

)
≤
(

n−kn
(n−kn)/2

)
≤ 2n−kn√

π
2
(n−kn)

.

Thus (A.5) is lower bounded by

≥ 2n−1√
π
2
(n+ 1)


kn/2∑
α=2δn

(
kn/2

α

) α∑
δ=2δn

(
kn/2

α− δ

)(
2n−kn√
π
2
(n− kn)

)
−1

=

√
n− kn

2
√
n+ 1

2−kn
kn/2∑
α=2δn

(
kn/2

α

) α∑
δ=2δn

(
kn/2

α− δ

)
−1

=

√
n− kn

2
√
n+ 1

2−kn
kn/2∑
α=2δn

(
kn/2

α

) α−2δn∑
i=0

(
kn/2

i

)
−1

(A.6)

Notice that

kn/2∑
α=2δn

(
kn/2

α

) α−2δn∑
i=0

(
kn/2

i

)

≤ 2kn −

 kn/4+2δn∑
j=kn/4−2δn

(
kn/2

j

)2

(A.7)

≤ 2kn −
[
2kn/2

(
1− 2 exp

(
−2δ2n
kn

))]2
(A.8)

= 4 exp
(
−2δ2n
kn

)
− 4 exp

(
−2δ2n
kn

)2

, (A.9)

where (A.7) is due to the observation of summation region, and (A.8) is due to Lemma

(A.2.2).

Applying (A.9), we have

(A.6) ≥
√
n− kn

8
√
n+ 1

{
exp(−2δ2n

kn
)− exp

(
−2δ2n
kn

)2
}−1

=

√
n− kn

8
√
n+ 1︸ ︷︷ ︸
(a)

exp
(
2δ2n
kn

)
︸ ︷︷ ︸

(b)

{
1− exp

(
−2δ2n
kn

)}−1

︸ ︷︷ ︸
(c)

As long as n→ ∞,

1) (a) ≥ 1
8
√
2
, due to the assumption 1

2
n > kn
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2) (b) = ω(np) for all integer p, due to the fact

exp
(
2δ2n
kn

)
≥ exp

(
kϵ2/2n

)
≥ exp

(
C1n

ϵ1ϵ2/2
)

≥ exp (p logn) = np

3) (c) ≥ 1

Combine (a), (b), (c) together, we conclude that as long as Tn polynomial in n, the suc-

cessful recovery is impossible.

A.3 Proof of Claim 3.4.1

First, we use the notation B(1)
n1 , B

(2)
n2 to denote the independent random variables with

distribution Binomial(n1, 1/2) and Binomial(n2, 1/2) respectively. By the definition of

probability of failure, Pf (x; kn, δn) is

PQ (∃x̃, ∥x̃− x∥1 > kn, ∥Qx̃−Qx∥∞ ≤ 2δn) (A.10)

=PQ

 ∪
x̃∈Bc

kn
(x)

∥Qx̃−Qx∥∞ ≤ 2δn

 (A.11)

≤
∑

x̃∈Bc
kn

(x)

Pr (|qx− qx̃| ≤ 2δn)
Tn (A.12)

=
n∑

t=kn

∑
x̃∈∂Bt(x)

Pr (|qx− qx̃| ≤ 2δn)
Tn (A.13)

≤
n∑

t=kn

(
n

t

)
max

t++t−=t
Pr
(∣∣∣B(1)

t+ −B
(2)

t−

∣∣∣ ≤ 2δn

)Tn
(A.14)

Here we use BR(x) to denote the ball centered at x with radius R, and use ∂BR(x) to

denote the boundary of BR(x).

Notice that (A.12) is due to union bound, (A.14) is due to the fact that each qi is generated

according to Ber(1/2). To handle (A.14), we give the following lemma:
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Lemma A.3.1 For t1 + t2 = T , T is even, the following fact holds:

Pr
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ
)

≤Pr
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ
)
,

where B(1)
t1 , B

(2)
t2 are independent random variables with distribution Binomial(n1, 1/2)

and Binomial(n2, 1/2) respectively.

From lemma A.3.1, we see that the maximum of (A.14) occurs when t+ = t− = t/2.

For simplicity we assume t even, and (A.14) becomes

n∑
t=kn

(
n

t

)
Pr
(∣∣∣B(1)

t/2 −B
(2)
t/22

∣∣∣ ≤ 2δn

)Tn
(A.15)

=
n∑

t=kn

(
n

t

)
Pr
(∣∣∣∣B(1)

t/2 −B
(2)
t/2 −

t

2

∣∣∣∣ ≤ 2δn

)Tn
(A.16)

=
n∑

t=kn

(
n

t

)
Pr
(∣∣∣∣Bt −

t

2

∣∣∣∣ ≤ 2δn

)Tn
(A.17)

=
n∑

t=kn

(
n

t

)
Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn , (A.18)

here Bt in (A.16) denotes the random variable with distribution Binomial(t, 1/2). (A.16)

is due to the basic combinatorial fact, and (A.17) is due to the fact that our construction of

Q is independent.

A.4 Technical Lemmas

A.4.1 Lemma A.4.1

Lemma A.4.1 Let Skn , Vi, T1 and T2 be defined as before. Then

max
S⊂[n]

∣∣{(x, x̃) ∈ Skn
∣∣ ||S ∩ T1| − |S ∩ T2|| > 2δn

}∣∣ (A.19)

achieves its maximum when |S| = n
2
.
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Proof. First, let |S| = s, s ∈ [n]. Then (A.19) becomes

2n−kn+1

kn/2∑
α=0

α∑
δ=2δn

(
s

α

)(
n− s

kn/2− α

)(
s− α

α− δ

)(
n− s− kn/2 + α

kn/2 + δ − α

)

=2n−kn+1

(
n

kn/2, kn/2, n− kn

)∑kn/2
α=0

∑α
δ=2δn

(
kn/2
α

)(
kn/2
α−δ

)(
n−kn
s−2α+δ

)(
n
s

) (A.20)

Therefore, maximize (A.19) is equivalent to maximize (A.20) over all possible s. After

change of variables, (A.20) becomes

∑
|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)(
n−kn
s−(i+j)

)(
n
s

)
=

∑
k

∑
i+j=k

|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)(
n−kn
s−k

)
(
n
s

)
=
∑
k


∑

i+j=k
|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)
(
kn
k

)


︸ ︷︷ ︸
ak

((
kn
k

)(
n−kn
s−k

)(
n
s

) )
︸ ︷︷ ︸

bk(s)

=
∑
k

ak · bk(s).

One can observe the following facts:

• ak is symmetric to k = kn/2, that is, ak = akn−k, since one can change the variables

(i′, j′) = (kn/2− i, kn/2− j).

• ak is maximized as k = kn/2. This can be proved by writing ak in another form:

ak =

∑
i>(k+2δn)/2 or
i<(k−δn)/2

(
k
i

)(
kn−k
kn/2−i

)
(
kn
kn/2

) ,

and it achieves maximum at k = kn/2. Also, ak is increasing in [0, kn/2] (and hence

decreasing in [kn/2, kn]).

• For all s ∈ [n],
∑

k bk(s) = 1.

• For s ∈ [0, n/2), bk(s) is maximized at k∗ ∈ [0, kn/2); for s ∈ (n/2, n], bk(s) is
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maximized at k∗ ∈ (kn/2, kn]. Also, bk(s) is increasing for k ≤ k∗, and decreasing

for k ≥ k∗.

• bk(s) is symmetric to (n/2, kn/2), that is,

bk(s) = bkn−k(n− s).

•
∑

k ak · bk(s) is symmetric to n/2, that is,
∑

k ak · bk(s) =
∑

k ak · bk(n− s).

Now, we are ready to show
∑

k ak ·bk(s) attains its maximum atx = n/2. For any s ∈ [n],

we have ∑
k

ak · bk(s) =
∑
k

ak ·
(
bk(s) + bk(n− s)

2

)
.

Consider the equation

bk(n/2) =

(
bk(s) + bk(n− s)

2

)
.

There’s exactly a zero at k = ξ ∈ [0, n/2] for all s, and due to symmetry, there’s another

zero at k = kn − ξ. Besides, bk(n/2) ≥
(
bk(s)+bk(n−s)

2

)
at k = kn/2. Therefore we

conclude that

bk(n/2) ≥
(
bk(s) + bk(n− s)

2

)
for s ∈ [ξ, kn − ξ], and

bk(n/2) <

(
bk(s) + bk(n− s)

2

)

for s ∈ [ξ, kn − ξ]c (With a slight abuse of notation, we denote [0, kn]\[ξ, kn − ξ] as

[ξ, kn − ξ]c).

Notice that since ∑
k

bk(s) =
∑
k

(
bk(s) + bk(n− s)

2

)
= 1,

we have

∑
k∈[ξ,kn−ξ]

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
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=−
∑

k∈[ξ,kn−ξ]c

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
. (A.21)

Now, consider

∑
k

ak · bk(n/2)−
∑
k

ak · bk(s)

=
∑
k

ak ·
(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
=

∑
k∈[ξ,kn−ξ]

ak ·
(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))

+
∑

k∈[ξ,kn−ξ]c
ak ·

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
≥0. (A.22)

(A.22) is due to the fact that ak1 ≥ ak2 , for all k1 ∈ [ξ, kn − ξ], k2 ∈ [ξ, kn − ξ]c and

(A.21). Since it holds for all s ∈ [n], the proof is complete.

A.4.2 Proof of Lemma A.3.1

Lemma A.3.1 For t1 + t2 = T , T is even, the following fact holds:

Pr
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ
)

≤Pr
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ
)
,

where B(1)
t1 , B

(2)
t2 are independent random variables with distribution Binomial(n1, 1/2)

and Binomial(n2, 1/2) respectively.

Proof. First, note that for Bt ∼ Binomial
(
t, 1

2

)
, t−Bt has the same distribution with

Bt. Therefore,

Pr
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ
)

= Pr (|Bt1+t2 − t2| ≤ δ)

= Pr (t2 − δ ≤ BT ≤ t2 + δ)
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≤Pr (T/2− δ ≤ BT ≤ T/2 + δ)

= Pr
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ
)
.

A.4.3 Proof of Lemma 3.4.1

Lemma 3.4.1 Let Bt
iid∼ Binomial(t, 1/2), δn ∈ (0, t/16) then the following two upper

bounds hold:

1) Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 4δn+1√
πt
.

This bound is used when δn is small (with respect to t).

2) Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 1− 2
15
e−64δ2n/t.

This bound is used when δn is large (with respect to t).

The proof can be found in Appendix D in [11].

Proof.

1) Since Pr(Bt = t/2) > Pr(Bt = k), for all k ∈ [0, t], we have

Pr (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤(4δn + 1) Pr(Bt = t/2)

≤4δn + 1√
πt

.

The last inequality is due to Lemma A.2.1.

2) For convenience, let δn = 2δ′n. This is equivalent to show

Pr(Bt > t/2 + δn) ≥
1

15
exp

(
−16δ2n/t

)
.

The proof is first given in [31], which involves some elementary estimates. For the

sake of completeness, we state it again.
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Write t = 2m. We have

Pr(Bt ≥ m+ δn) = 2−2m

m∑
j=δn

(
2m

m+ j

)

≥2−2m

2δn−1∑
j=δn

(
2m

m+ j

)

=2−2m

sδn−1∑
j=δn

(
2m

m

)
m

m+ j
· m− 1

m+ j − 1
· · · m− j + 1

m+ 1

≥ 1√
m

2δn−1∑
j=δn

j∏
i=1

(
1− j

m+ i

)

≥ 1√
m

(
1− 2δn

m

)2δ

≥ 1√
m

· exp(−8δ2n/m).

For δn ≥
√
m
4
, the last expression is at least 1

8
exp

(−16δn
n

)
. For 0 ≤ δn <

√
m
4
, we have

Pr(Bt > m+ δn) > Pr(Bt > m+

√
m

4
) ≥ 1

8
exp(−1/2) >

1

15
.

Thus the claimed bound holds for all δn ≤ m/4.

A.4.4 Proof of Lemma A.2.1

Lemma A.2.1 For n ≥ 2, the following binomial bound holds:

4n√
π
2
(2n+ 1)

≤
(
2n

n

)
≤ 4n√

πn

Proof. First we consider the two expressions:

2n

((
2n

n

)
1

4n

)2

=
1

2

3

2

3

4

5

4
· · · 2n− 1

2n− 2︸ ︷︷ ︸
(1)

2n− 1

2n︸ ︷︷ ︸
(2)

(A.23)

=
1

2

n∏
j=2

(
1 +

1

4j(j − 1)

)
, (A.24)
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and

(2n+ 1)

((
2n

n

)
1

4n

)2

=
1

2

3

2

3

4

5

4
· · · 2n− 1

2n− 2

2n− 1

2n︸ ︷︷ ︸
(1)

2n+ 1

2n︸ ︷︷ ︸
(3)

(A.25)

=
n∏
j=1

(
1− 1

4j2

)
. (A.26)

ByWallis’s formula, (1) converges to 2
π
, and (2), (3) converge to 1. Therefore, both (A.24),

(A.26) converge to 2
π
. Notice that according to the left hand side of two expressions, (A.24)

is increasing and (A.26) is decreasing, with the same limit. Therefore we conclude that

2n

((
2n

n

)
1

4n

)2

≤ 2

π
, (A.27)

and

(2n+ 1)

((
2n

n

)
1

4n

)2

≥ 2

π
. (A.28)

Since this holds for n ≥ 2, the proof is complete.

A.4.5 Proof of Lemma A.2.2

Lemma A.2.2 For δ ≤ n/2, the following bound holds:

n/2+δ∑
k=n/2−δ

(
n

k

)
≥ 2n

(
1− 2 exp

(
−δ

2

n

))

Proof. This is a direct application of Chernoff Bound. Let Xi
i.i.d∼ Ber(1

2
), i ∈ [N ].

Applying Chernoff inequality on X =
∑N

1 Xi, we have

Pr(X ≥ EX + δ) ≤ exp
(
−δ2

n

)
.
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Therefore,

n/2+δ∑
k=n/2−δ

(
n

k

)
≥2n

(
1− 2 exp

(
−2δ2

n

))

≥2n
(
1− 2 exp

(
−δ

2

n

))
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Appendix B

Proof of Lemmas in Chapter 5

B.1 Proof of Proposition 4.3.1

proof of Proposition 4.3.1. Since the optimal type-II exponent does not depend on ϵ, we

denote it as E∗(α) and for simplicity. It suffices to show

E∗(λα1 + (1− λ)α2) ≤ λE∗(α1) + (1− λ)E∗(α2), ∀λ ∈ [0, 1].

First, let

E∗(α1) =
K∑
k=1

α1kD (U∗
1k ∥P1;k)

E∗(α2) =
K∑
k=1

α2kD (U∗
2k ∥P1;k)

whereα1 = [α11, ..., α1K ]
⊺,α2 = [α21, ..., α2K ]

⊺, andU ∗
1 ≜ [U∗

11, ..., U
∗
1K ],U

∗
2 ≜ [U∗

21, ..., U
∗
2K ]

are the minimizers of (4.7). Then, by the convexity of KL divergence, we have

λE∗(α1) + (1− λ)E∗(α2) =
K∑
k=1

λα1kD (U∗
1k ∥P1;k) + (1− λ)α2kD (U∗

2k ∥P1;k)

≥
K∑
k=1

(λα1k + (1− λ)α2k)D

(
λα1kU

∗
1k + (1− λ)α2kU

∗
2k

λα1k + (1− λ)α2k

∥∥∥∥P1;k

)
(B.1)
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Now we claim that Ũ ≜
(
λα1kU

∗
1k+(1−λ)α2kU

∗
2k

λα1k+(1−λ)α2k

)
k=1,...,K

satisfies

(λα1 + (1− λ)α2)
⊺Ũ = (λα1 + (1− λ)α2)

⊺P0, (B.2)

and thus

(B.1) =
∑K

k=1
(λα1k + (1− λ)α2k)D

(
Ũk

∥∥∥P1;k

)
≥ min

U∈(PX )K

(λα1+(1−λ)α2)⊺U=(λα1+(1−λ)α2)⊺P0

∑K

k=1
(λα1k + (1− λ)α2k)D (Uk ∥P1;k)

=E∗(λα1 + (1− λ)α2).

To show (B.2), we notice that U ∗
1 , U ∗

2 satisfy the constraints

α⊺
1U

∗
1 = α⊺

1P0, α
⊺
2U

∗
2 = α⊺

2P0. (B.3)

Then we have

(λα1 + (1− λ)α2)
⊺Ũ

=
K∑
k=1

(λα1k + (1− λ)α2k)

(
λα1kU

∗
1k + (1− λ)α2kU

∗
2k

λα1k + (1− λ)α2k

)

=
K∑
k=1

λα1kU
∗
1k + (1− λ)α2kU

∗
2k

=λα⊺
1U

∗
1 + (1− λ)α⊺

2U
∗
2

=(λα1 + (1− λ)α2)
⊺P0,

which completes the proof.
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B.2 Proof of Lemma 4.5.1

proof of Lemma 4.5.1. First, observe that since int Γ is open, the set

Γ̃ ≜ {(U1, ..., UK) | α⊺U ∈ int Γ} ⊂ (PX )
K

is open too. This is because the mapping g(U) = α⊺U is continuous, so the pre-image

preserves the openness (under standard topology). Therefore, we can find a sequence

{
U (n) ∈ (Pn1 × · · · × PnK

) ∩ Γ̃
}
,

such that

∑
k

αkD
(
U

(n)
k

∥∥∥Pθ;k)→ − inf
(U1,...,UK)∈(PX )K

α⊺U∈int Γ

∑
k

αkD (Uk ∥Pθ;k) ,

where the limit is taken such that nk

n
→ αk. So we have

Pθ;σ {Πxn ∈ Γ} =
∑

(U1,...,UK)∈Pn1×···×PnK
α⊺U∈Γ

K∏
k=1

P⊗nk
θ;k {Tnk

(Uk)}

≥
∑

(U1,...,UK)∈Pn1×···×PnK
α⊺U∈int Γ

K∏
k=1

P⊗nk
θ;k {Tnk

(Uk)}

≥ max
(U1,...,UK)∈Pn1×···×PnK

α⊺U∈int Γ

K∏
k=1

P⊗nk
θ;k

{
Tnk

(
U

(n)
k

)}
(a)

≥ max
(U1,...,UK)∈Pn1×···×PnK

α⊺U∈int Γ

(
1

(nk + 1)|X |

)
2
∑K

k=1 nkD
(
U

(n)
k

∥∥∥Pθ;k

)
,

where inequality (a) holds by Lemma 2.1.2. Thus we have

1

n
logPθ;σ {Πxn ∈ Γ} ≥ − min

(U1,...,UK)∈Pn1×···×PnK
α⊺U∈int Γ

(
K∑
k=1

nk
n
D
(
U

(n)
k

∥∥∥Pθ;k)+ o(1)

)
.
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As n→ ∞ such that nk

n
→ αk, we see that

− inf
(U1,...,UK)∈(PX )K

α⊺U∈int Γ

∑
k

αkD (Uk ∥Pθ;k) ≤ lim inf
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} .

On the other hand, for the upper bound, consider

Pθ;σ {Πxn ∈ Γ} =
∑

(U1,...,UK)∈Pn1×···×PnK
α⊺U∈Γ

K∏
k=1

P⊗nk
θ;k {Tnk

(Uk)}

(a)

≤
∑

(U1,...,UK)∈Pn1×···×PnK
α⊺U∈Γ

2
∑K

k=1D
(
U

(n)
k

∥∥∥Pθ;k

)

≤

(∏
k

|Pnk |

)
2
∑K

k=1 nkD
(
U

(n)
k

∥∥∥Pθ;k

)

(b)
= 2

(∑K
k=1 nkD

(
U

(n)
k

∥∥∥Pθ;k

)
+o(1)

)
,

where where inequality (a) holds by Lemma 2.1.2, and (b) holds due to the cardinality

bound Lemma 2.1.1.

As n→ ∞ and nk

n
→ αk, we have

lim sup
n→∞

1

n
logPθ;σ {Πxn ∈ Γ} ≤ − inf

(U1,...,UK)∈(PX )K

α⊺U∈Γ

∑
k

αkD (Uk ∥Pθ;k) .

Notice that for the case X finite, the infimum takes over Γ is equal to that one takes in the

closure of Γ, since we can use standard topology to find a sequence approaching to the

limit point. Thus the proof is complete.

B.3 Proof of Lemma 4.5.2

proof of Lemma 4.5.2. LetQ ∈ (PX )
K be a K-tuple of probability measure on X . We

first show that

CQ ≜ {T ∈ PX : fQ(T ) <∞}

is a compact set.
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Part 1 (Compactness) Observe that fQ(T ) < ∞ if and only if there exists a P =

(P1, ..., PK) ∈ (PX )
K , such that

1. α⊺P = T

2. for all i = 1, ..., K, Pi ≪ Qi.

Therefore, let us denote

MQ ≜
{
P ∈ (PX )

K : Pi ≪ Qi, ∀i = 1, ..., K
}
⊆ (PX )

K .

We claim thatMQ is a compact set, and thus

CQ = {α⊺P | P ∈ MQ}

is also compact, since α⊺P is a linear mapping from (PX )
K to PX so compactness is

preserved. To prove the claim, it suffices to show that MQ is a closed set, because the

boundness is directly followed by the boundness of (PX )
K . It is equivalent to show

MC
Q =

{
P ∈ (PX )

K : Pi ̸≪ Qi, for some i
}

is open. Notice that

{
P ∈ (PX )

K : Pi ̸≪ Qi, for some i
}
=

K∪
i=1

{
P ∈ (PX )

K : Pi ̸≪ Qi

}
,

so it suffices to show
{
P ∈ (PX )

K : Pi ̸≪ Qi

}
is open for all i. Assume Pi ̸≪ Qi. Then

there must exist some measurable event E ⊂ X , such thatQi(E) = 0, and Pi(E) = ϵ > 0.

Therefore, ifX is finite and thusPX equipped with total-variation distance (i.e. one norm),

then obviously for any Q̃ such that ∥Q̃− Pi∥ < ϵ
2
, Q̃ ̸≪ Qi. HenceMC

Q is open, proving

the claim.

Remark B.3.1 If X is Polish, then PX is equipped with Prokhorov’s metric, and one can

use similar argument to show thatMC
Q is open.
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Next, we show that fQ(·) is a convex function, so the convexity of CQ follows: for all

T1, T2 ∈ CQ,

fQ(λT1 + (1− λ)T2) ≤ λfQ(T1) + (1− λ)fQ(T2) <∞, (B.4)

implying λT1 + (1− λ)T2 ∈ CQ.

Part 2 (Convexity) To show (B.4), we observe

λfQ(T1) + (1− λ)fQ(T2)

= inf
U :α⊺U=T1

λ
∑
k

αkD (Uk ∥Pk) + inf
V :α⊺V =T2

(1− λ)
∑
k

αkD (Vk ∥Pk)

(a)

≥ inf
U ,V :α⊺U=T1,α⊺U=T2

∑
k

αkD (λUk + (1− λ)Vk ∥Pk)

(b)

≥ inf
P :α⊺P=λT1+(1−λ)T2

∑
k

αkD (Qk ∥Pk)

=fQ(λT1 + (1− λ)T2),

where (a) is due to the convexity of KL-divergence, and (b) is because

α⊺U = T1,α
⊺V = T2 ⇒ α⊺ (λU + (1− λ)V ) = λT1 + (1− λ)T2.

Therefore, we conclude that fQ(·) is a convex function and CQ is a convex set.

At the final step, we show fQ(·) is a continuous function on CQ. Notice that the con-

vexity of fQ(·) only guarantees the continuity on the interior of CQ, and thus we need to

additionally check the boundary points.

Remark B.3.2 Note that in general, the interior of CQ may be an empty set since it may

lie in a subspace of PX . Alternatively, we can define a point P being interior, if it can be

written as

λU + (1− λ)V , for some λ ∈ (0, 1), and some V ,U ∈ CQ.

Part 3 (Continuity) First, if the interior of CQ is empty, then by the convexity, either CQ
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is a empty set, or it is a singleton. For both cases, the continuity holds obviously. Hence

without losing of generality, we assume that the interior of CQ is non-empty, and T0 is an

interior point.

Then for any T ∈ CQ, we can construct a sequence Tn ∈ CQ, Tn → T . For example,

one can let Tn = λnT0 + (1− λn)T , with λn → 0. Let U (n) = (U
(n)
1 , ..., U

(n)
K ) ∈ (PX )

K

be a sequence such that

1. α⊺U (n) = Tn

2. U (n) achieves the infimum of fQ(Tn) :

K∑
k=1

αkD
(
U

(n)
k

∥∥∥Pk) = inf
V :α⊺V =Tn

K∑
k=1

αkD (Vk ∥Pk) = fQ(Tn).

Notice that the infimum can always be achieved since g(V ) ≜
∑K

k=1 αkD (Vk ∥Pk)

is a continuous function over the compact setMQ.

By construction,U (n) is a sequence in a compact setMQ, and hence by Bolzano-Weierstrass

theorem (see Chapter 1 in [34], for example), there exists a convergent subsequenceU (ni),

and let us denote the convergent point

lim
i→∞

U (ni) = U .

Since α⊺U (ni) = Tni
, and Tni

→ T , we have

α⊺U = T.

Notice that the function f(V ) ≜
∑K

k=1 αkD (Vk ∥Pk) is a continuous function over the

compact setMQ, we must have

lim
n→∞

fQ(Tn) = lim
i→∞

fQ(Tni
) =

K∑
k=1

αkD (Uk ∥Pk) ,
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and therefore

fQ(T ) = inf
U :α⊺V =T

K∑
k=1

αkD (Vk ∥Pk) ≤
K∑
k=1

αkD (Uk ∥Pk) = lim
n→∞

fQ(Tn).

On the other hand, by the convexity of fQ(·), we must have

fQ(T ) ≥ fQ(Tn), for all n large enough.

Otherwise

fQ(λT0 + (1− λ)T ) > λfQ(T0) + (1− λ)fQ(T ),

for some λ small enough, which violates the fact that fQ(·) is a convex function.
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