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Differentially Private Parameter Estimation

from Distributed Sources
Wei-Ning Chen and Janet Sung

Abstract

We consider the problem of parameter estimation with data collected from M parties, each party holding N copies

of identically and independently distributed (i.i.d.) samples. In many circumstances, parties are not willing to reveal

their private information, so the released data will be ϵ-differential private. In this paper, we propose two algorithms to

estimate parameter: for general dataset with the number of samples satisfying M = o
(
N2

)
and the privacy parameter

satisfying ϵ = Ω
(
N1/6M−1/3

)
, we proposed subsample-and-aggregate estimator, which is asymptotically efficient

(i.e. its MSE is asymptotically equal to Fisher information). On the other hand, if the underlying distributions are

from exponential family and if ϵ = Ω(1/N), we showed that sufficient-statistic-averaging is always efficient as N

goes to infinity. Our results showed that as long as the number of parties does not grow too fast, one can guarantee

differential privacy for free, without sacrificing the performance of estimation.

I. INTRODUCTION

Efficiently extracting information from large-scale dataset is one of the key factors to the success in recent

data science. Many parametric approaches from classical statistical inference and non-parametric machine learning

algorithms have been proposed, and with the increasing availability of data, these algorithms showed their great

power in real-world application. However, with the explosive growth of available data in both cyber and physical

world, almost every piece of them carries someone’s fingerprint or sensitive personal information., and existing

research have shown that such information could be utilized to identify one’s identity and invade individual privacy.

For example, [1] exploited the public relevant database to de-anonymize dataset released by netflix, proving that

even removing sensitive entries from a dataset, such as name or SSN, is not enough to protect personal privacy.

To address the challenge, Dwork proposed differential privacy [2] to quantitatively measure the level of privacy

protection in a statistical database. An intuitive approach that satisfies the differentially private constraint is to perturb

data with random noise, which is mostly generated from a Laplacian distribution with fixed variance. Though the

proposed perturbation mechanism works in single database, it increases the noise of the uncertainty of statistical

inference, making maximum likelihood estimator (MLE) no longer statistically efficient (meaning its mean square

error is asymptotically equal to Fisher information). In other words, the mechanism preserves the privacy at the

price of deteriorating the utility. To address such difficulty, in [3], Smith proposed an subsample-and-aggregation
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estimator that achieves Fisher information while preserving differential privacy. However their approach only holds

when only one database is of interest, which may not capture the general real-world situation since in practice data

is usually stored and collected from multiple sources.

In this paper, we investigate the problem of parameter estimation with data collected from M parties, each party

holding N copies of identically and independently distributed (i.i.d.) samples. We proposed a strategy that, under

some mild regularity conditions, computes an statistical efficient estimator of all MN samples, and simultaneously

achieves ϵ-differential privacy with respect to each party. We also proved that if the underlying distributions of

samples further belong to exponential family, then the regularity conditions can be removed, and as long as N

goes to infinity, the proposed estimator is also asymptotically efficient. In addition, the proposed algorithm is

computational efficient and the multi-party setting can be easily adopted into real world scenario.

A. Related Work

Prior to our work, Smith proposed a mechanism to obtain differentially private and efficient estimator [3]. It is

possible to repeatedly used his mechanism in each of our party. However, the result is not optimal and the added

noise might be redundant.

Beside point esimator for parametric model, another possible application of the database is the classifier for

machine learning problem. In [4] Hamm et al. design an ensemble voting classifier using the empirical risk

minimization approach to ensure differential privacy. However, in their setting there is a trusted third party. If

so, one can simply let the trusted party train the classifier. Furthermore, the accuracy of the mechanism dropped

significantly at high privacy level.

Another way to protect individual data in distributed setting is via cryptography approach [5]. However, in such

way, the privacy constraint must be relaxed into ϵ-δ differential privacy and all data distance is assumed to be

within a unit ball.

II. PROBLEM FORMULATION

Consider M parties P1, ...,PM with the i-th party Pi holds dataset Si = {xi1, ..., xiN}, i = 1, ...,M . Each

sample xij is drawn identically and independently from distribution Pθ, where θ ∈ Θ is a compact set in Rn with

diameter Λ. Our goal is to estimate θ privately from the distributed dataset S1, ..., SM . We will use the convention

that capital letters (X , T , etc) refer to random variables, and the lower cases refer to certain realizations.

We begin by introducing some context about differential privacy.

A. Differential Privacy

We say two fixed datasets D, D′ are adjacent if D and D′ differs in one item if for some i,

D = x1, x2, ..., xi, ..., xN

D′ = x1, x2, ..., x
′
i, ..., xN

A (randomized) query mechanism is differential privacy if for all possible pairs of neighboring datasets, the outputs

of query have similar distribution:
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Definition 2.1 (Differential Privacy): A randomized algorithm T (·) is ϵ-differentially private if for all neighboring

pairs of datasets Dand D′ , and for all measurable subsets of outputs (events) S:

P(T (D) ∈ S)
P(T (D′) ∈ S)

≤ eϵ

This condition states that even the adversary holds as much side information as almost the whole database D (except

for a single data), he or she cannot infer much about the unknown item.

Definition 2.2 (Sensitivity): For a deterministic function f : Xn → Rk, we define the sensitivity of f as

S(f) = max
D1,D2

|f(D1)− f(D2)|.

Theorem 2.1 (Output Perturbation): Let f be defined as before and ϵ > 0. Define randomized algorithm A as

A(D) = f(D) + Lap(
S(f)

ϵ
),

where the one-dimensional (zero mean) Laplace distribution Lap(λ) has density Pλ(x) =
1
2λe

−|x|
λ , and Lap(λ)k =

(l1, ..., lk) where each li
iid∼ Lap(λ). Then A is ϵ-differential private.

B. The MLE and Efficiency

To evaluate performances of estimators, we propose the mean square error(MSE) to evaluate it, which is defined

as following:

JT (θ)
def
= Eθ((T (X)− θ)2)

The notation Eθ means that X is drawn i.i.d. from distribution f(·, θ). Note that if T (·) is unbiased, the MSE is

simply the variance of T (X). It is also well-defined even for randomized estimators: T (X) = t(X,R), where R

is externel random source.

Definition 2.3 (Maximium likelihood estimator): Let L(θ)
def
= f(x, θ). The maximium likelihood ratio test is

defined as

θ̂MLE = argmax
θ∈Θ

L(θ)

if such maximum exsits.

It is a classic result that, for well-behaved parametric families, the θ̂MLE exists with high probability and is

asymptotically normal, centered around the true value θ. Moreover, its expected square error is given by the inverse

of Fisher information at θ, where the Fisher information is defined as following:

If (θ)
def
= Eθ((

∂

∂θ
ln f(X, θ))2) (1)

Lemma 2.1: Under appropriate regularity conditions, the MLE converges in distribution to a Gaussian centered

at θ that is,
√
n(θ̂MLE − θ)

D→ N(0, 1
If (θ)

). Moreover, Jθ̂MLE
(θ) = 1+o(1)

nIf (θ)
.

Fisher information upperbounds the MLE of estimators. If an estimtor matches this bound, we say it is efficient.
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C. bias correction

The asymptotic efficiency of the MLE implies that its bias, bMLE = Eθ(θ̂MLE − θ) goes to zero more quickly

than 1√
n

. However, we will need an estimator with much lower bias. This can be obtained via a (standard) process

known as bias correction. Under appropriate regularity assumptions, we can describe the bias of MLE precisely,

namely

Eθ(θ̂MLE − θ) =
b1(θ)

n
+O

(
1

n
3
2

)
where b1(θ) has a uniformly bounded derivative (see, for example, discussions in Cox and Hinkley [7], Firth [22],

and Li [26]). Several methods exist for correcting this bias. The simplest is to subtract off an estimate of the leading

term, using b1(θ̂MLE) to estimate b1(θ); the result is called the bias-corrected MLE,

θ̂bc = θ̂MLE − b1(θ̂MLE)/n

Lemma 2.2: The bias-correcred MLE θ̂bc converges at the same rate as MLE, but with lower bias, that is,

bbc = Eθ(θ̂bc − θ) = O

(
1

n
3
2

)
III. MAIN RESULT

First, we consider the point estimation on non-distributed data. Adam Smith showed that if the data satisfied

some weak regularity, then we can construct an efficient estimator by subsample-and-aggregation method. We state

as the following theorem:

Theorem 3.1 (Centralized subsample-and-aggregate): Under appropriate regularity conditions, there exists a

(randomized) estimator T which is ϵ-differentially private and asymptotically efficient, with mean-square-error
1

nIf (θ)

(
1 +O(n−1/5ϵ−6/5

)
. Thus one can choose ϵn = Ω(n1/6), so that limn→∞ ϵ = 0.

Proof. Detailed proof can be found in A.Smith’s work[1].

Algorithm 1 Centralized subsample-and-aggregate

1: procedure CSAA(x = (x1, ..., xn), ϵ) ▷ Private Efficient Estimator T ∗

2: Arbitrarily divide the input x into k disjoint sets B1, ..., Bk of t = n
k points. We call these k sets the blocks

of the input.

3: for each block Bj = (x(j−1)t+1, ..., xjt)) do

4: Apply the bias corrected MLE θ̂bc to obtain an estimate zj = θ̂bc(x(j−1)t+1, ..., xjt)
end for

5: Compute the average estimate: z̄ = 1
k

∑
zj

6: Draw a random observation R from a Laplace distribution with standard deviation
√
2Λ/(kϵ).

7: return T ∗ = z̄ +R

Now, we generalized the result of theoerem to distributed framework. Consider the M parties possess datasets

x1, ...,xM respectively.

2015.11.9 DRAFT



5

x = (x1, ..., xn)

(x1, ..., xt) (xt+1, ..., x2t) (xn−t+1, ..., xn)· · ·

θ̂bc θ̂bc θ̂bc· · ·

Average

z1 z2 zk

z̄

+R ∼ Lap
(
Λ

kϵ

)
output T ∗ = z̄ +R

Fig. 1: The estimator T ∗. When the number of bins k is o(n2/3) and ϵ is not too small, T ∗ is asymptotically

efficient

Algorithm 2 Distributed subsample-and-aggregate

1: procedure DSAA((x1, ...,xM ), ϵ) ▷ Private Efficient Estimator T ∗

2: for each party Pj , run CSaA as in Algorithm 1 , xj = (xj1, ..., xjN )) do

3: T ∗
j ← CSaA(xj , ϵ)

end for

4: Compute the average: T̄ = 1
M

∑
T ∗
j

5: return T̄

Theorem 3.2 (Distributed subsample-and-aggregate): For M parties with datasets x1, ...,xM respectively, if M

not to large, say, M = o(N2), then the estimator T̄ discribed in Algorithm 2 has MLE

JT̄ (θ) =
1

MN

(
1 + o(1)

If (θ)
+

NΛ2

k2ϵ2
+

k2M

N2

)
,

where k is the number of subblocks in ALgorithm 1.

By appropriate choosing k, one can get the following result:

Corollary 3.1: If M = o(N2), and ϵ = Ω(N
1
6M− 1

3 ), T̄ , given by DSaA, is ϵ−differential private and asymp-

totically efficient.

Subsample-and-aggregate method provides a brilliant idea to estimate parameters privately. However, in some

case, our dataset may come from some well-behaved distribution, for example, the exponential family. If we utilize

properties of the distribution, we can obtain more improvement. One of the best improvement assures the better

convergence rate, which allows us to get rid of the constraint M = O(N2).
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Fig. 2: The estimator T̄ . When the number of parties not to large , such that M = o(N2) and ϵ is not too small,

T̄ is asymptotically efficient

Definition 3.1 (exponential family): An distribution has the following form

f(x, θ) = h(x)eθ
TT (x)−α(θ)

is called in exponential family. We introduces some basic property of exponential family which we may use in our

scheme.

Proposition 3.1: If x1, ..., xn
iid∼ X , where X is a random variable from exponential family defined as above.

Then 1
n

∑n
i=1 T (xi) is a sufficient statistic of θ.

An observation of the original subsample-and-aggregate scheme is that averaging of MLE losses too much infor-

mation. Instead, if we replace the θ̂MLE by the sufficient statitic T (xi), and apply MLE at the final steps, then we

can obtain a better comvergent rate.

Algorithm 3 Centralized sufficient-statistics-averaging

1: procedure CSSA(x = (x1, ..., xn), ϵ) ▷ Private Efficient Estimator T ∗

2: Arbitrarily divide the input x into k disjoint sets B1, ..., Bk of t = n
k points. We call these k sets the blocks

of the input.

3: for each block Bj = (x(j−1)t+1, ..., xjt)) do

4: Compute tj =
1
t

∑t
i=1 T(j−1)t+i

end for

5: Compute the average estimate: T = 1
k

∑
tj

6: Draw a random observation R from a Laplace distribution with standard deviation
√
2ΛT /(kϵ).

7: return T ∗ = T +R
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Algorithm 4 Distributed sufficient-statistic-averaging

1: procedure DSSA((x1, ...,xM ), ϵ) ▷ Private Efficient Estimator T ∗

2: for each party Pj , run DSSA as in Algorithm 3 , xj = (xj1, ..., xjN )) do

3: T ∗
j ← CSSA(xj , ϵ)

end for

4: Compute the average: T̄ = 1
M

∑
T ∗
j

5: Compute θ̂MLE(T̄ )

6: return θ̂MLE(T̄ )

Theorem 3.3 (sufficient-statistic-averaging): For M parties with datasets x1, ...,xM respectively, the estimator

θ̂MLE(T̄ )discribed in Algorithm 4 has MLE

Jθ̂MLE(T̄ )(θ) =
1

MN

(
1 + o(1)

If (θ)
+

1√
N

4
√
32ΛT (1 + o(1))√

ϵIf (θ)
+

√
2ΛT

ϵN

)
.

Proof. Let T̄ be defined as algorithm 4, and T = 1
MN

∑MN
i=1 T (xi) be the unperterbed sufficient statistcs. First,

since T is sufficient, and by lemma 11, we have

Jθ̂MLE(T )(θ) = Eθ[(θ̂MLE(T )− θ)2] =
1

NM

(
1 + o(1)

If (θ)

)
.

Also, if range(T ) is bounded by ΛT , we can bound Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ))
2] by

Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ))
2] ≤ Eθ[(θ̂

′
MLE(T̃ )

2(T − T̄ )2], for some T̃ ∈ range (T )

Also note that

θ̂′MLE ≤ var(T ) ≤ ΛT ,

and

Eθ[((T − T̄ )2] = varθ[
1

M

M∑
i=1

Ri] (note that Ri
iid∼ Lap(Λ/ϵ))

=
1

MN2

√
2ΛT

ϵ

To upper bound Jθ̂MLE(T̄ )(θ), we have

Eθ[(θ̂MLE(T̄ )− θ)2] = Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ) + θ̂MLE(T )− θ)2]

= Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ))
2]

+ 2Eθ[(θ̂MLE(T )− θ)(θ̂MLE(T̄ )− θ̂MLE(T ))] + Eθ[(θ̂MLE(T )− θ)2]

≤ Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ))
2] + Eθ[(θ̂MLE(T )− θ)2]

+ 2

√
Eθ[(θ̂MLE(T )− θ)2]Eθ[(θ̂MLE(T̄ )− θ̂MLE(T ))2] (by Cauchy’s inequality)

≤ 1

MN2

√
2ΛT

ϵ
+ 2

√
1

MN2

√
2ΛT

ϵ
· 1

MN

(
1 + o(1)

If (θ)

)
+

1

MN

(
1 + o(1)

If (θ)

)

=
1

MN

(
1 + o(1)

If (θ)
+

1√
N

4
√
32ΛT (1 + o(1))√

ϵIf (θ)
+

√
2ΛT

ϵN

)
.
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Corollary 3.2: If ϵ = o(N−1) and the number of data N each parties possess increase to infinity, the T̄ given

by DSSA is asymptotically efficient.

Proof. By theorem 12, the MSE of T̄ is given as

Jθ̂MLE(T )(θ) = Eθ[(θ̂MLE(T )− θ)2] =
1

NM

(
1 + o(1)

If (θ)

)
.

If ϵ = o(N−1), then

Jθ̂MLE(T )(θ) =
1

MN

(
1

If (θ)
+ oN (1)

)

IV. DISCUSSION AND RELATED WORK

We proposed a mechanism that releases an asymptotically efficient estimator of data collected from multiple party.

Furthermore, we explore the relationship of the number of parties M , number of data N , and the privacy measure

ϵ while using our mechanism. The MSE of the resulting estimator T̄ writing in the form of Fisher information is

clearly defined above.

Working on general data, where there is no assumption of data distribution, to output an efficient estimator with

our mechanism, the number of parties should be kept under a certain scale related to the number of data retrieved

from each party. Furthermore, the privacy level is proportional to the number of party and the number of data. In

other words, with more parties participated and each contributes more data, the optimal privacy level is higher as ϵ

getting smaller. Less but not least, if the data distribution is assumed to be in the exponential family, we may relax

the constraint on the number of participating parties. Besides the relaxation, the privacy level now only concerns

the number of data N .

Our mechanism facilitates real life situations such as schools providing students’ records to state government

or hospitals cooperates in nationwide project. Nevertheless, we sense the need of a hierarchical mechanism.

For example, schools provide data to state government and state governments provide either data or calculated

information to federal government. Furthermore, in this paper, the number of data contributed by each party is the

same while it might not be in practice. These are some improvement we can make to our work.
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