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Crowdsourcing Framework

�2

Tasks

Fusion
Center

Goal : test the hypothesis

H0 : negative

H1 : positive

Xi
i.i.d.� Ber(p0)�

Xi
i.i.d.� Ber(p1)�

….
X1 X2 Xn�1Xn

Workers
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Heterogeneous Crowdsourcing

�3

• Each worker has different ‘ability/bias’ 

‣ e.g. spammers or malicious workers

‣ can be grouped according to prior knowledge

• Answers no longer identically distributed
H0 : negative

H1 : positive

Xi
i.i.d.� Ber(p0)�

Xi
i.i.d.� Ber(p1)�

Workers

….1

[1] Panagiotis G. Ipeirotis, et. al “Quality Management on Amazon Mechanical Turk,” Proceedings of the ACM SIGKDD Workshop on Human Computation, 2010

high-quality

X1

low-quality

X2 Xn�1Xn
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Hardness : No Group Information

�4

Workers

….
• Fusion center doesn’t know the group each 

worker belongs to, due to

‣ Privacy

‣ Identification cost

• To address the anonymity issue, we propose
‣ Using golden tasks to estimate the group info.

‣ Testing the hypothesis anonymously

high-quality low-quality

X1 X2 Xn�1Xn

Fusion
Center

….

No group information available !
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Organization

�5

• Mathematical Formulation and Previous Works
• Main Results : Converse, Achievability, and Impossibility Results
• Sketch of Proofs

Part I : Group Recovery with Golden Tasks 

Part II : Anonymous Hypothesis Testing
• Formulation 
• Main Results : Optimal Decision Rule and Asymptotic Behavior
• Sketch of Proofs
• Extensions

Part III : Conclusion and Future Directions



Part I : Group Recovery with Golden Tasks 
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Golden Questions for Group Recovery

�7

….

• Assumptions on golden questions
‣ Answers are (almost) deterministic

‣ Workers from different groups (green/brown) respond different answers (0/1)

• Allowed to query the golden questions to a subset of workers

• Collect the aggregation of answers

golden
1 1 10 0 0

Q1

output : 2 (2x1+1x0)
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Golden Questions for Group Recovery

�8

….
1 1 10 0 0 output : 1 (1x1+3x0)

Q2

golden

• Assumptions on golden questions
‣ Answers are (almost) deterministic

‣ Workers from different groups (green/brown) respond different answers (0/1)

• Allowed to query the golden questions to a subset of workers

• Collect the aggregation of answers
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Golden Questions for Group Recovery

�9

….

• Assumptions on golden questions
‣ Answers are (almost) deterministic

‣ Workers from different groups respond different answers

• Allowed to query the golden questions to a subset of workers

• Collect the aggregation of answers

golden
1 1 10 0 0

Q2
output : 1 (1x1+3x0)

How many queries required to recover 
the group info. ?
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Golden Tasks for Group Recovery
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0

0

0

1

1

1

1

0

0

1

0

1

q1

0

0

1

1

1

1

q2

output : 2 3

0

0

1

1

0

0

qT

…

1…
y�

y =

⎡

⎢⎢⎢⎣

qᵀ
1

qᵀ
2
...
qᵀ
T

⎤

⎥⎥⎥⎦
x ! Qxnoiseless :

Equivalent Linear Inverse Problem

x



Master Oral Exam, July 2018

0…output : 3

Part I : Group Recovery

Golden Tasks for Group Recovery
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0

0

0

1

1

1

1

0

0

1

0

1

q1

0

0

1

1

1

1

q2

3

0

0

1

1

0

0

qT

…

x

y�

y =

⎡

⎢⎢⎢⎣

qᵀ
1

qᵀ
2
...
qᵀ
T

⎤

⎥⎥⎥⎦
x ! Qxnoiseless :

Equivalent Linear Inverse Problem

noisy : y =

⎡

⎢⎢⎢⎣

qᵀ
1

qᵀ
2
...
qᵀ
T

⎤

⎥⎥⎥⎦
x+

⎡

⎢⎢⎢⎣

∆1

∆2
...

∆T

⎤

⎥⎥⎥⎦
! Qx+∆

|∆i| ≤ δn (⇔ ∥∆∥∞ ≤ δn)assumption :
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0…output : 3

0 0 1

0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

x

Part I : Group Recovery

Golden Tasks for Group Recovery
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1

0

0

1

0

1

q1

0

0

1

1

1

1

q2

3

0

0

1

1

0

0

qT

…

x

y�

y =

⎡

⎢⎢⎢⎣

qᵀ
1

qᵀ
2
...
qᵀ
T

⎤

⎥⎥⎥⎦
x ! Qxnoiseless :

Equivalent Linear Inverse Problem

noisy : y =

⎡

⎢⎢⎢⎣

qᵀ
1

qᵀ
2
...
qᵀ
T

⎤

⎥⎥⎥⎦
x+

⎡

⎢⎢⎢⎣

∆1

∆2
...

∆T

⎤

⎥⎥⎥⎦
! Qx+∆

|∆i| ≤ δn (⇔ ∥∆∥∞ ≤ δn)assumption :

recover column by column !
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Query Complexity
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• Recovery criterion
‣ Lossless recovery :

‣ Lossy recovery with distortion :

• Query complexity                  : minimum # of queries required to recover

• Also known as pooled data decoding, histogram query, coin weighing, etc.

‣ [2] specified the query complexity for noiseless query, lossless recovery : 

‣ [3] studied the query complexity for k-sparse data :

‣ [4,5] studied random noise, and proposed AMP decoding

‣ Independently, [6,7] also suggested similar results, and studied erasure errors

x̂ = x

∥x̂− x∥1 ≤ kn

T ∗(kn, δn)

[2] I.-H. Wang, et. al “Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms,” ISIT, 2016 
[3] I.-H. Wang, et. al “Extracting Sparse Data via Histogram Queries,” Allerton, 2016 
[4] Ahmed El Alaoui, et. al “Decoding from Pooled Data: Phase Transitions of Message Passing,” ISIT, 2017 
[5] J. Scarlett, et. al “Phase Transitions in the Pooled Data Problem,” NIPS, 2017 
[6] Nader H. Bshouty, et. al “On the Coin Weighing Problem with the Presence of Noise” 
[7] Nader H. Bshouty, “Optimal Algorithms for the Coin Weighing Problem with a Spring Scale,” COLT, 2009

T ∗ = Θ

(
n

log n

)

T ∗ = Θ

(
k

log k
log

(n
k

))
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Main Results

�14

δn = Θ
(
nd

)
, kn = Θ (nκ)

1� (distortion)0

1/2

d

(n
oi

se
)

d >

(
1

2
+ ϵ

)
κ

d <
1

2
κ

non-polynomial !
T � = � (exp (n�)) T � = �

�
n

log n

�

sub-linear !

High SNR regimeLow SNR regime
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1� (distortion)0

d

(n
oi

se
)

Part I : Group Recovery

Regime I : High SNR

�15

T ∗(kn, δn) = Θ(n/ log n)

High SNR regime

d <
1

2
κ
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Regime I : Achievability

�16

0

0

0

1

1

1

1

0

0

1

0

1

0

0

1

1

1

1

3 3

0

0

1

1

0

0

…

0…

x

y�

• Random sampling
‣  

• Probability of failure  
 

• If # queries is                    , then  
 

‣ Apply Chernoff’s bound for the failure event

Q

(Q)i,j
i.i.d.∼ Ber(1/2)

Pf (x; kn, δn) ! P {∃ another consistent x̃}

Ω (n/ log n)

Pf (x; kn, δn) → 0
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Regime I : Converse
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• Necessary condition : 
 

• Packing inequality 
 

2�n-packing number on Y � 1
2kn-packing number on X

δn

YX
kn Q

∀x, x̃ ∈ X , ∥x− x̃∥1 > kn =⇒ ∥Qx−Qx̃∥∞ > 2δn
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Regime II : Low SNR

�18

� (distortion)0

1/2

d

(n
oi

se
)

d >

(
1

2
+ ϵ

)
κ

Low SNR regime

T � (kn, �n) = � (exp (n�))
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Regime II : Impossibility of  Polynomial Queries

�19

Idea : without sufficient queries, � more than one x consistent with the response y

Skn

Vi

confused set

at least               queries required
|Skn |

maxi|Vi|

1. Initial : consider all possible pairs 

2. After each query : remove inconsistent pairs

3. Until : no more confused pair 

Skn ! {(x, x̃) | x, x̃ ∈ {0, 1}n, ∥x− x̃∥1 = kn, ∥x∥1 = ∥x̃∥1}

Vi ! {(x, x̃) ∈ Skn | |qᵀ
i (x− x̃)| > δn}
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Regime II : Impossibility of  Polynomial Queries

�20

• Lower bound on query complexity

T � (kn, �n) � |Skn |
maxi�{1,2,...,T} |Vi|

� C exp

�
�2
n

kn

�
= C exp

�
n2d��

�
solving the optimization over V ,
and apply Chernoff ineq
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1� (distortion)0

1/2

d

(n
oi

se
)

Part I : Group Recovery

Summary
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δn = Θ
(
nd

)
, kn = Θ (nκ)

d >

(
1

2
+ ϵ

)
κ

d <
1

2
κ

Low SNR regime

T � = � (exp (n�))

High SNR regime

T � = �
�

n
log n

�



Part II : Anonymous Hypothesis Testing
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Test Hypothesis Anonymously

�23

No group information available !

• Sometimes we don’t need the group info.
‣ e.g. the homogeneous setting

• Goal: deign a good decision rule for all 

possible scenario

• Quantify price of anonymity

Workers

….

high-quality low-quality 

Fusion
Center

…

….
X1 X2 Xn−1Xn
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• Heterogeneity: K group of workers
‣Workers in group      follows distribution      

‣ The k-th group has        workers, 

• Neyman-Pearson setting: 
‣Minimize Type-II error prob. while keeping 
‣ type-I error prob. small 

‣Minimum Type-II error probability: 

‣ Error exponent:

Part II : Anonymous Hypothesis Testing

Heterogeneous Distributed Detection

�24

Xi
i.i.d.∼ Pθ;k, for i ∈ Ik

Ik Pθ;k

nαk

∑K

k=1
αk = 1

θ ∈ {0, 1}

(� �)

β(n) (ϵ,α1, ...,αK)

E(�, �) � lim
n��

�
� 1

n log2 �(n) (�, �)
�

, if it exists
Θ̂ = φ (Xn)

Workers

….

high-quality low-quality

Fusion
Center

…

….
X1 X2 Xn−1Xn
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Effect of  Heterogeneity without Anonymity

�25

Example: Two Group (K=2)

When FC is informed of the group that each worker belongs to:
⇒ Einformed(ϵ,α) = (1− α)D (P0 ∥P1) + αD (Q0 ∥Q1)

weighted combination of ‘resolvability’ of different groups! 

….

Fusion
Center

Group 1:

Xi
i.i.d.∼ Pθ

n(1 � �) workers

Xi
i.i.d.∼ Qθ

Group 2:

n� workers
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Composite Hypothesis Testing

�26

• Not sure about which group each worker belongs to?

{
H0 : Xn ∼ P0;σ ! ∏n

i=1 P0;σ(i), for some σ

H1 : Xn ∼ P1;σ ! ∏n
i=1 P1;σ(i), for some σ

• Formally speaking: 

1 
2

2 
2

3 
1

5 
1

4 
2

6 
2

worker ID i

group assignment �(i)

Pθ
△
=

⎡

⎢⎢⎢⎣

Pθ;1

Pθ;2
...

Pθ;K

⎤

⎥⎥⎥⎦
group distributions

� design algo. with performance guarantee for all possible scenarios

σ : [n] → [K], s.t. | {i : σ(i) = k} | = nαk
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Composite Hypothesis Testing

�27

{
H0 : Xn ∼ P0;σ ! ∏n

i=1 P0;σ(i), for some σ

H1 : Xn ∼ P1;σ ! ∏n
i=1 P1;σ(i), for some σ

� : [n] � [k], s.t. |{i|�(i) = k}| = n�k

P0;1P0;2P0;2 P0;2P0;1P0;2 P0;2P0;2P0;1possible dist. under H0

possible dist. under H1

�

P1;2P1;2P1;1P1;1P1;2P1;2 P1;2P1;1P1;2

Xi
i.i.d.∼ Pθ;1

Xi
i.i.d.∼ Pθ;2

• Example: K = 2, � = ( 1
3 , 2

3 ) ( red : blue= 1 : 2)
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Minimax Neyman-Pearson Formulation

�28

• Type-II error exponent: 

E(�, �) � lim
n��

�
� 1

n
log2 �(n)(�, �)

�

• Neyman-Pearson Regime : 

• Probability of errors:

Huber[1973], Kuznetsov[1982], Veeravalli [1994], etc. 

�(n)(�, �) � min
�

PM
(n)(�)

s.t. PF
(n)(�) < �

PF
(n)(�) � max

�
P0;� {�(Xn) = 1} ( the worst case Type-I error probability)

PM
(n)(�) � max

�
P1;� {�(Xn) = 0} ( the worst case Type-II error probability)
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Main Contribution : Optimal Test

�29

�(xn) �
�

� P0;�(xn)�
� P1;�(xn)

likelihood ratio between uniform mixture under H0 to H1

φ(xn) =

⎧
⎪⎨

⎪⎩

1, if ℓ(xn) < τ

γ, if ℓ(xn) = τ

0, if ℓ(xn) > τ

�GLRT(x
n) � sup� P0;�(xn)

sup� P1;�(xn)

mixture likelihood ratio test

• Optimal Decision Rule :

• An intuitive test : first estimate the group assignment    , then do LRTσ

� Generalized likelihood ratio test

is this optimal ?
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Main Contribution : Type-II Error Exponent

�30

• Compared to informed case :
Einformed(ϵ,α) =

K∑

k=1

αkD (P0;k ∥P1;k)

• A generalized ‘divergence’ :

� Independent of �, convex in �

� Plays a similar role as KL divergence in simple hypothesis testing

recall

P =

⎡

⎢⎢⎢⎣

P1

P2
...

PK

⎤

⎥⎥⎥⎦

min
U�(PX )K

�K

k=1
�kD (Uk �Qk)

s.t. ��U = ��P

D� (P ; Q) �

• Type-II error exponent :
E(�, �) = D� (P ; Q)
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Main Contribution : Type-II Error Exponent

Part II : Anonymous Hypothesis Testing �31

Example (K=2)

n(1 � �) workers

Xi
i.i.d.� Ber(p�)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

(p0, p1) = (0.3, 0.8), (q0, q1) = (0.8, 0.2)

α

E(ϵ,α)

Informed

n� workers

Xi
i.i.d.� Ber(q�)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

(p0, p1) = (0.3, 0.8), (q0, q1) = (0.8, 0.2)

α

E(ϵ,α)

anonymous

Informed

Price of Anonymity

mixing ratio

D (p0 ∥p1)

D (q0 ∥q1)
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Sketch of  Proof  : Optimal Test

�32

• Idea :
1) ‘Symmetric test’ (tests depend only on the empirical distribution of     ) is the best

2) Among all symmetric tests, the mixture likelihood ratio test (MLRT) is optimal  

xn
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• Idea :
1) ‘Symmetric test’ (tests depend only on the empirical distribution of     ) is the best

2) Among all symmetric tests, the likelihood ratio test of uniform mixture is optimal  

• Idea :
1) ‘Symmetric test’ (tests depend only on the empirical distribution of     ) is the best

2) Among all symmetric tests, the mixture likelihood ratio test (MLRT) is optimal  

xn

Part II : Anonymous Hypothesis Testing

Sketch of  Proof  : Optimal Test

�33

step 1 

step 2 

�(xn) =
1

n!

�

� : all permutations

� (�(xn))

�(·) �(·)symmetrization

proof

� is better : PF(�) � PF(�), and PM(�) � PM(�) the empirical distribution contains  
sufficient information !

PF(�) = max
�

EP0;�

�
1

n!

�

�

� � �(Xn)

�

= max
�

1

n!

�

�

EP0;� [� � �(Xn)]

� 1

n!

�

�

max
�

EP0;� [� � �(Xn)]

=PF(�)

PF(�) = max
�

EP0;�

�
1

n!

�

�

� � �(Xn)

�

= max
�

1

n!

�

�

EP0;� [� � �(Xn)]

� 1

n!

�

�

max
�

EP0;� [� � �(Xn)]

PF(�) = max
�

EP0;�

�
1

n!

�

�

� � �(Xn)

�

= max
�

1

n!

�

�

EP0;� [� � �(Xn)]
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• Idea :
1) ‘Symmetric test’ (tests depend only on the empirical distribution of     ) is best

2) Among all symmetric tests, the mixture likelihood ratio test (MLRT) is optimal  

• Idea :
1) ‘Symmetric test’ (tests depend only on the empirical distribution of     ) is the best

2) Among all symmetric tests, the mixture likelihood ratio test (MLRT) is optimal  

Part II : Anonymous Hypothesis Testing

Sketch of  Proof  : Optimal Test

�34

{
H0 : P0;σ, for some σ

H1 : P1;σ, for some σ
⇒

{
H̃0 : P̃0

H̃1 : P̃1

Equivalent simple hypothesis testing on PX

Neyman-Pearson lemma:

xn

collection of xn with all
possible orderings

observation : 

Pθ;σ (T (Πxn))

independent of � !

! P̃θ(Πxn) ℓ(xn) =
P̃0(Πxn)

P̃1(Πxn)
=

∑
σ P0;σ(xn)∑
σ P1;σ(xn)

ℓ(xn) =
P̃0(Πxn)

P̃1(Πxn)

Xn

all empirical
distributions

PX

Πxn
xn ··

Π(·)
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Asymptotic Regime : Sanov’s Theorem

�35

PX

A

i.i.d simple hypothesis testing 
Hθ : Xn ∼ (Qθ)

⊗n

Sanov’s Theorem
Q⊗n

θ (xn : Πxn ∈ A) ≈ 2
−n

(
min
U∈A

D(U ∥Qθ)

)

·Q1

·

{D (Πxn ∥Q0) small}

heterogeneous anonymous testing
Hθ : Xn ∼ Pθ;σ for some σ

Find exponents of large deviation events:

=� type-II error exponent : D (Q0 �Q1)

Hoeffding[1965]

=� type-II error exponent : D� (P ; Q)

with the rate function being

For any σ, we have

min
V �(PX )K

�K

k=1
�kD (Vk �P�;k)

s.t. ��V = ��U

D� (P ; Q) �

Pθ;σ (Πxn ∈ A) ≈ 2
−n

(
min

αᵀU∈A
Dα(U ;Pθ)

)
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Key Step : non-i.i.d. Sanov’s Theorem

�36

P�;�

xn sub-type U1 sub-type U2

i.i.d. Pθ;1 i.i.d. Pθ;2

n�1 n�2

Pθ;σ(Πxn) ≈ 2−n(α1D(U1 ∥Pθ)+α2D(U2 ∥Qθ))

Recall : Q�n (�xn) � 2�nD(�xn �Q)

· minimize over all sub-types : {U1, U2 : �1U1 + �2U2 = V }

· minimize over all types : V � A

min
V �(PX )K

�K

k=1
�kD (Vk �P�;k)

s.t. ��V = ��U

D� (P ; Q) �

Theorem :

For any �, P�;� (�xn � A) � 2
�n

�
min

��U�A
D�(U ;P�)

�

, with the rate function being
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Key Step : non-i.i.d. Sanov’s Theorem

�37

Theorem :

For any �, P�;� (�xn � A) � 2
�n

�
min
V �A

d(V,P�)

�

, with the rate function being

d(V, P�) � min
U�(PX )n

��U=V

K�

k=1

�kD (Uk �P�;k)

P�;�

xn

i.i.d. P� i.i.d. Q�

sub-type U1 sub-type U2

n�1 n�2

Pθ;σ(Πxn) ≈ 2−n(α1D(U1 ∥Pθ)+α2D(U2 ∥Qθ))

Recall : Q�n (�xn) � 2�nD(�xn �Q)

· minimize over all sub-types : {U1, U2 : �1U1 + �2U2 = V }

· minimize over all types : V � A

Also holds for Polish  XX
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• Optimal decision rule :  mixture likelihood ratio test (MLRT)

• Asymptotic :

Part II : Anonymous Hypothesis Testing

Summary

�38

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

(p0, p1) = (0.3, 0.8), (q0, q1) = (0.8, 0.2)

α

E(ϵ,α)

anonymous

Informed

GLRT

extended to Chernoff regime by 
solving information projection !

Generalized divergence

min
V �(PX )K

�K

k=1
�kD (Vk �P�;k)

s.t. ��V = ��U

Dα(U ,Pθ) !

E(�) = D�(P0, P1)



Part III : Conclusion and Future Directions

�39
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Is group-recovery necessary ?
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Future Work : Partially Recovery
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• Partially recover the group
‣ Exact recovery is too expensive

‣ Clustering different groups

• Difficulties
‣ How to optimally cluster groups 

‣ How to evaluate the optimal type-II exponent 

‣ How to trade off

Workers

blue green
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Future Work : Partially Recovery
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• Partially recover the group
‣ Exact recovery is too expensive

‣ Clustering different groups

• Difficulties
‣ How to optimally cluster groups 

‣ How to evaluate the optimal type-II exponent 

‣ How to trade off

Workers

NP-hard !
approximation / bounds
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Thanks for your attention !


