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Abstract—Parametric point estimation from anonymous and
heterogeneous data is studied. For heterogeneity, we assume
n samples are independently drawn, each following one of K
possible distributions. For anonymity, we assume the estimator
knows the number of samples drawn from each distribution, but
which one each sample follows is hidden. In words, samples as a
sequence are passed through an unknown permutation prior to
being observed. The goal is to find an estimator that minimizes
the worst-case statistical risk over all possible permutations. We
prove that an optimal estimator depends only on the empirical
distribution (type) of samples, and when the risk function is
the mean squared error (MSE), it follows a non-trivial Cramer-
Rao lower bound. We further characterize its asymptote as
n → ∞, assuming the number of samples from each distribution
is proportional to n. The lower bound is of the order of 1/n,
and the reciprocal of its prefactor is the Fisher information of
the mixture of the K distributions.
A full version of this paper is accessible at:

http://homepage.ntu.edu.tw/~ihwang/Eprint/isit19ahest.pdf

I. INTRODUCTION

Statistical inference is a fundamental task in data science,
where a decision maker aims to determine a hidden param-
eter based on the data it collects, as well as how the data
depends on the target parameter statistically. In many modern
applications such as crowdsourcing and sensor networks, data
is heterogeneous and collected from various sources follow-
ing different distributions. These sources, however, may be
anonymous to the decision maker due to considerations in
identification costs and privacy [1]. Since the distribution
becomes unknown, it is unclear how to carry out optimal
inference, and hence the impact of source anonymity on
the performance of statistical inference remains elusive. In
our previous work [2], [3], binary hypothesis testing from
anonymous and heterogeneous data was investigated. We
proved that the empirical distribution (type) is sufficient for
hypothesis testing when the sources are anonymous. Under
the Neyman-Pearson formulation, we found that anonymity
severely decreases the type-II error exponent.

In this work, we study heterogeneous parametric point
estimation under source anonymity. There are n independent
sources, and each source (say source i, i ∈ {1, ..., n}) gives
a single random sample Xi. The decision maker estimates
the hidden parameter θ ∈ Θ from the collected samples
X1, ..., Xn. For heterogeneity of the sources, we assume that
they are clustered into K groups, and the k-th group comprises
nk sources. The sample drawn from a source in the k-th
group follows distribution Pk;θ, θ ∈ Θ. For anonymity of the

sources, we assume that although the decision maker is fully
aware of the heterogeneity of samples collected from the data
sources, including the set of distributions {Pk;θ | k = 1, ...,K}
and the number of sources in each cluster, {nk | k = 1, ...,K},
it does not know which distribution each source follows. In
words, the sample sequence Xn , (X1, ..., Xn) is passed
through an unknown permutation π prior to being observed.
Our goal is to find an estimator that minimizes the worst-case
statistical risk over all possible permutations.

Our main contribution is two-fold. In the first part of our
contribution, we show that an optimal estimator that minimizes
the worst-case statistical risk depends only on the type of
the samples Xn, meaning that the order of samples, despite
that they are drawn from heterogeneous sources, provides no
information for inference. Hence, when the loss function is
the the squared error loss and the statistical risk is the mean
squared error (MSE), the worst-case MSE has a non-trivial
Cramer-Rao Lower Bound (CRLB) under suitable regularity
conditions, and the reciprocal of this lower bound is the
Fisher information (FI) of the distribution of the type of Xn.
Due to the data processing inequality, it is not greater than
the FI of the product distribution of Xn when the order is
known. This motivates us to further investigate how the FI
scales asymptotically as the number of samples n grows,
so that the asymptotic performance loss due to anonymity
can be characterized. In the second part of our contribution,
we characterize the asymptotic Fisher information. Under the
assumption that the proportion of sources in each group, that
is, nk

n → αk for each k as n → ∞, we show that the FI of
the type of Xn grows linearly with n as n → ∞, and the
prefactor turns out to be the FI of the mixture distributions
the K distributions with the mixing ratio being (α1, ..., αK).

For proving the sufficiency of type in heterogeneous para-
metric point estimation under source anonymity, we exploit
the symmetric structure of the problem and show that for
an arbitrary estimator, if one symmetrizes it by averaging
with respect to all permutations of the samples, the statistical
risk cannot increase. For characterizing the asymptotic FI of
empirical distribution, we first analyze the Kullback-Leibler
divergence (KLD) between two empirical distributions, and
then by leveraging the fact that KLD behaves locally as FI
and taking the second order derivative to KLD, we obtain
the asymptotic FI. The rationale behind using such a two-step
approach is that, the large deviation analysis on KLD allows
us to circumvent the direct computation on FI, the asymptote



of which is difficult to analyze since it involves summing the
joint distributions over all possible permutations of samples.

Related works

The unknown permutation π in our problem is a nuisance
parameter, that is, parameters which are not directly of interest
but may influence the distribution of samples. There is a rich
literature studying how to eliminate nuisance parameters, see,
for example, a detailed study in [4]. Among them, our ap-
proach aligns with the marginalization methods, in which we
choose a suitable statistic (the empirical distribution function
in our case) so that the resulting distributions no longer depend
on π. Interestingly, by leveraging the symmetry of nuisance
parameters in our problem, we prove that such marginalization
approach achieves optimality under the minimax principle (i.e.
worst case π). Inference with an unknown permutation has also
been studied in the literature of compressed sensing [5], [6]
and linear regression [7], in which the measurements are per-
muted before being observed. [5], [6] aim to recover the signal
(i.e. θ as an d-dim vector) under noiseless assumption and
thus the authors mainly focus on designing the measurement
matrix. For the linear regression with additive i.i.d. Gaussian
noise [7], the unknown permutation π is of interest and sharp
conditions are set in order to recover π, which is different
from our setting that π is treated as a nuisance parameter.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

Following the description of the setting in Section I, let
us formulate the heterogeneous parametric point estimation
problem under source anonymity. Consider n independent
heterogeneous sources, numbered from 1 to n, and source i,
i ∈ {1, ..., n}, gives a single random sample Xi ∈ X drawn
from one of the K distributions {Pk;θ | k = 1, ...,K}, and the
hidden parameter to be estimated is θ ∈ Θ. Throughout this
paper, we shall assume that the alphabet has finite cardinality
|X | = d and X = {a1, ..., ad}. Let nk denote the number
of sources that follow distribution Pk;θ, for k = 1, ..,K, and
hence n =

∑K
k=1 nk. The estimator has access to the joint

sample Xn and knows {nk | k = 1, ...,K} and the parametric
family of distributions {Pk;θ | k = 1, ...,K, θ ∈ Θ}. However,
it does not know the which distribution each source follows,
and we would like to guarantee the worst-case performance
over all possibilities of the source distributions.

Hence, without loss of generality, we can equivalently re-
order the n samples so that it follows the following product
distribution:

Xn ∼ Pθ , (P1;θ)
⊗n1 (P2;θ)

⊗n2 · · · (PK;θ)
⊗nK . (1)

Meanwhile, the joint observation Xn is perturbed by a n-
permutation π : {1, ..., n} → {1, ..., n} which is not revealed
to the estimator. Hence, the estimator needs to consider all n!
possible permutation of π and estimates the underlying θ ∈ Θ.

For notational convenience, we will use Sn to denote the
collection of n-permutation and use ΠXn as the empirical
distribution of Xn

ΠXn ,

[
1

n

n∑
i=1

1{Xi=a1}, ...,
1

n

n∑
i=1

1{Xi=ad}

]ᵀ
∈ Rd.

With a slight abuse of notation, we sometimes use π ∈ Sn as a
coordinate permutation acting on samples Xn = (X1, ..., Xn),
namely, π (Xn) ,

(
Xπ(1), ..., Xπ(n)

)
.

To evaluate an estimator φ (Xn)’s performance, let us
consider a general convex loss function ` : Θ × Θ → [0,∞)
and the corresponding worst-case statistical risk as

R∗
θ(φ) , maxπ∈Sn

EXn∼Pθ
[` (θ, φ(π(Xn)))] .

When the loss function is the squared error loss, R∗
θ(φ) ≡

MSE∗
θ(φ) denotes the worst-case mean squared error (MSE).

B. Fisher information and Cramer-Rao lower bound

Let us recap some classical results of point estimation,
including Fisher information and Cramer-Rao lower bound.

Definition 2.1 (Fisher information): Suppose pθ(x) is a
parametric model and θ 7→ pθ(x) is differentiable for all x ∈
X . Then the Fisher information is defined as

Ip(θ) , Epθ

[(
∂
∂θ log pθ(X)

)2]
.

Throughout this paper, we assume some regularity con-
ditions on pθ(x) (for more details, see [8, Chapter 5] for
example), including

1) pθ(x) is twice differentiable with respect to θ,
2) Θ is an open interval, and
3) the support of pθ(x) does not depend on θ,

so that Fisher information has an alternative form:

Ip(θ) = −Epθ

[
∂2

∂θ2 log pθ(X)
]
.

Remark 2.1: Usually we need another condition to exchange
the order of the derivative and the expectation operator, but in
this paper we assume the alphabet is finite, and hence we can
always swap them.

If the aforementioned conditions are satisfied, then the MSE
of any unbiased estimator is lower bounded by the Cramer-
Rao lower bound (CRLB), namely, MSEθ(θ̂) ≥ Ip(θ)

−1. There
is also an generalized version of CRLB for biased estimator
[8, Theorem 5.10], in which FI also plays an essential role.
It is noteworthy that if neglecting the unknown permutation
in our problem, that is, the estimator knows it and there is no
anonymity, the Fisher information of Pθ (as defined in (1))
becomes

IP(θ) =
∑K

k=1 nkIPk
(θ)

due to the independence across samples, where IPk
(θ) is

Fisher information of the k-th source Pk;θ.



III. MAIN RESULTS

Our first result is about the characterization of an optimal
estimator that minimizes the worst-case statistical risk.

Theorem 3.1 (Empirical Distribution is Sufficient): For
the anonymous estimation problem, the empirical distribution
of Xn is sufficient to estimate θ̂. That is, for any estimator
φ̂(Xn), there exists an estimator θ̂ (Xn) which depends only
on ΠXn and

R∗
θ(θ̂) ≤ R∗

θ(φ̂).

Proof: We adopt a similar approach as in Rao-Blackwell
Theorem [8, Theorem 7.8] by mapping an arbitrary estimator φ̂
to the functional space of ΠXn , and argue that the worst-case
statistical risk of mapped estimator is not greater than that
of φ̂. Construct the mapping by averaging over all possible
permutations as follows:

θ̂ (Xn) ,
1

n!

∑
σ∈Sn

φ̂ (σ (Xn)) .

Then we have

R∗
θ

(
θ̂
)
= max

π∈Sn

Eθ

[
`

(
θ,

1

n!

∑
σ∈Sn

φ̂ (σ ◦ π (Xn))

)]
(a)
= Eθ

[
`

(
θ,

1

n!

∑
π∈Sn

φ̂ (π (Xn))

)]
(b)
≤ 1

n!

∑
π∈Sn

Eθ

[
`
(
θ, φ̂ (π (Xn))

)]
≤ max

π∈Sn

Eθ

[
`
(
θ, φ̂ (π (Xn))

)]
= R∗

θ

(
φ̂
)
,

where (a) is due to the fact that

∀π, Sn ◦ π , {σ ◦ π | σ ∈ Sn} = Sn,

and (b) is due to the convexity of the loss function ` and the
linearity of expectation. In particular, we notice that after the
mapping, θ̂ depends only on the empirical distribution since it
outputs the same value for any two realizations differing each
other by a permutation: ∀σ, τ ∈ Sn, θ̂ (σ(X

n)) = θ̂ (τ(Xn)).
This establishes the theorem.

Theorem 3.1 implies we can find an optimal estimator that
is a function of the empirical distribution of the samples, and
the order does not matter at all. Before we proceed, let us
denote the distribution of ΠXn as P̃θ (note that Xn ∼ Pθ).

For ease of presentation, in the rest of this paper we assume
K = 2 and set P1;θ = Pθ, P2;θ = Qθ, so

Xn ∼ Pθ = P⊗n1

θ Q⊗n2

θ .

The extension to general (finite) K is straightforward.
Our second result is about the asymptote of the minimum

worst-case MSE as the number of samples n → ∞ with nk/n
converges to a constant αk, for k = 1, ...,K. For the case
K = 2, we use the notation (n1/n, n2/n) → (α, ᾱ), with ᾱ ,
1−α. As stated in Section II, Fisher information gives a non-
trivial lower bound on MSE, and by Theorem 3.1 we know
that empirical distribution includes all information we need to

estimate θ. Therefore, the asymptotic Fisher information of P̃θ

characterizes the asymptote of the non-trivial lower bound of
the worst-case MSE.

Theorem 3.2 (Asymptotic Fisher information): Suppose P̃θ,
the distribution of ΠXn , is “good enough” such that the family
of functions of φ,{

1
n(θ−φ)2

D
(
P̃θ

∥∥∥P̃φ

) ∣∣∣n ∈ N
}
,

is equicontinuous at φ = θ. Then the Fisher information of P̃θ

is given by

nEθ

[
− ∂2

∂θ2 logMθ(X)
]
+ o(n), (2)

where Mθ(x) is the mixture distribution of Pθ(x) and Qθ(x):

Mθ(x) , αPθ(x) + (1− α)Qθ(x).

Remark 3.1: A family of functions of φ, {gn(φ) |n ∈ N},
is equicontinuous at φ = φ0 if |gn(φ0)− gn(φ)| < ε for all n
as long as |φ0 − φ| < δ, where δ is independent of n.

Sketch of Proof: One can start with the exact FI of P̃θ and
then analyze its asymptotic behavior. However, the direct anal-
ysis involves bounding complicated terms that need to consider
all possible permutations. To circumvent the difficulties, we
first compute the asymptote of KLD, which is much easier
to control than FI if proper large deviation tools are applied,
and then exploit the relation between KLD and FI by taking
the second order derivative of KLD. The two-step approach
requires an additional equicontinuous assumption in order to
exchange the order of limit and derivative. Detailed proof of
Theorem 3.2 can be found in Section IV.

Remark 3.2: For i.i.d. samples, the maximum likelihood
estimator (MLE) achieves CRLB asymptotically under suitable
regularity conditions and thus (nIp(θ))

−1 is a tight bound.
However, in our setting, the underlying distribution of ΠXn is
no longer i.i.d. and lack of structure, making the analysis of
asymptote of MLE intractable, so the tightness of the bound
in Theorem 3.2 remains unsettled.

Let us consider a toy example to illustrate the loss due to
anonymity. Suppose two sources follow distributions Ber(θ)
and Ber(1 − θ) respectively. Then the mixture distribution
Mθ = [αθ+(1−α)(1− θ), α(1− θ)+ (1−α)θ]ᵀ. According
to Theorem 3.2, the asymptotic Fisher information normalized
by n is given by

(1− 2α)2 (1− (α+ θ − 2αθ))
−1

(α+ θ − 2αθ)
−1

,

which is strictly smaller than the asymptotic Fisher informa-
tion normalized by n in the case without anonymity, that is,
(θ(1− θ))

−1, for 0 < α < 1.

IV. ASYMPTOTIC FISHER INFORMATION

In this section, let us prove Theorem 3.2. To begin with, let
us set up some notations. Let p and q be two d-dimensional
probability vectors on X , and D (p ‖q) be the KL-divergence
(with base e) between them. Then we use ∇ppD (p ‖q) to
denote the Hessian matrix of D (· ‖q) (namely, regarding
D (p ‖q) as a function of p with q being fixed). ∇qqD (p ‖q),



∇pqD (p ‖q), and ∇qpD (p ‖q) are defined in a similar
manner. For the ease of presentation, we shall omit the dummy
variable:

[∇ppD (pθ ‖qθ)]ij ,
∂2D(p ‖pθ)

∂pi∂pj

∣∣∣
p=pθ

[∇qqD (pθ ‖qθ)]ij ,
∂2D(pθ ‖q)

∂qi∂qj

∣∣∣
q=qθ

[∇pqD (pθ ‖qθ)]ij ,
∂2D(p ‖q)
∂pi∂qj

∣∣∣
(p,q)=(pθ,qθ)

[∇qpD (pθ ‖qθ)]ij ,
∂2D(p ‖q)
∂qi∂pj

∣∣∣
(p,q)=(pθ,qθ)

(3)

In words, the subscript p (or q) indicates which argument the
derivative operator acts on. In addition, denote p′θ , ∂pθ/∂θ
(a d-dimensional vector).

Next, let us introduce some technical lemmas.
Lemma 4.1: Let pθ(x) satisfy the regularity conditions in

Section II-B. Then its Fisher information can be expressed by

Ip(θ) = p′θ
ᵀ∇qqD (pθ ‖pθ) p′θ.

The relation between KL divergence and Fisher information
motivates us to first estimate D

(
P̃θ

∥∥∥P̃φ

)
, analyze its limit,

and then leverage Lemma 4.1 to obtain IP̃(θ). The following
lemma gives us the asymptotic behavior of D

(
P̃θ

∥∥∥P̃φ

)
:

Lemma 4.2 (Asymptotic Formula of KL Divergence): Let
Xn ∼ Pθ , (Pθ)

⊗n1 (Qθ)
⊗n2 , and P̃θ be the distribution of

ΠXn (and so does P̃φ). Then we have

D
(
P̃θ

∥∥∥P̃φ

)
= n

(
min

V0,V1∈PX
αD(V0 ‖Pφ)+ᾱD(V1 ‖Qφ)

s.t. αV0+ᾱV1=αPθ+ᾱQθ

)
+ o(n), (4)

where ᾱ , (1− α).
Next, by imposing an additional equicontinuous condition

on P̃θ, we can exchange the order of derivative and the limit.
Lemma 4.3: If the family of functions of φ,{

1
n(θ−φ)2

D
(
P̃θ

∥∥∥P̃φ

) ∣∣∣n ∈ N
}
,

is equicontinuous at φ = θ, the following holds at φ = θ:

lim
n→∞

∂2

∂φ2

(
1
nD

(
P̃θ

∥∥∥P̃φ

))
= ∂2

∂φ2

(
lim

n→∞
1
nD

(
P̃θ

∥∥∥P̃φ

))
.

Proof of Lemma 4.2 can be found in Section V, and proofs
for other technical lemmas are delegated to Appendix of the
full version. In the following, the proof of Theorem 3.2 is
presented.

Proof of Theorem 3.2: According to Lemma 4.1,
Lemma 4.2, and Lemma 4.3, it suffices to evaluate the second
order derivative of (4). Equivalently, we aim to analyze the
following limit:

lim
∆θ→0

1

∆θ2

(
min

V0,V1∈PX
αD(V0 ‖Pθ+∆θ)+ᾱD(V1 ‖Qθ+∆θ)

s.t. αV0+ᾱV1=αPθ+ᾱQθ

)
(5)

Part 1 (Change of Variables): Now let us rewrite the
constraint by transforming the variables V0, V1 in PX to the
tangent space {

V0 = Pθ + f0∆θ

V1 = Qθ + f1∆θ,

where
∑

x∈X fi(x) = 0, for i = 0, 1. By the Taylor expansion
we also have{

Pθ+∆θ = Pθ + P ′
θ∆θ + o(∆θ)

Qθ+∆θ = Qθ +Q′
θ∆θ + o(∆θ).

The optimization problem (5) (if temporarily omitting the limit
on ∆θ) thus becomes

min
(f0,f1)∈F

αD (Pθ + f0∆θ ‖Pθ + P ′
θ∆θ + o(∆θ)) /∆θ2︸ ︷︷ ︸

Part A

+ ᾱD (Qθ + f1∆θ ‖Qθ +Q′
θ∆θ + o(∆θ)) /∆θ2︸ ︷︷ ︸

Part B

, (6)

where for notational simplicity, we define the feasible set F ,
(T0×T1)∩T , with Ti , {fi :

∑
x∈X fi(x) = 0}, for i = 0, 1,

and T , {(f0, f1) : αf0 + ᾱf1 = 0}.
Part 2 (Local Approximation): As Lemma 4.1 suggests

that KLD is locally quadratic, we then consider the local
expansion on the objective function. That is, Part A of (6)
can be approximated by

[f0, P
′
θ]

[
∇ppD (Pθ ‖Pθ) ∇pqD (Pθ ‖Pθ)
∇qpD (Pθ ‖Pθ) ∇qqD (Pθ ‖Pθ)

] [
f0
P ′
θ

]
+ o(1).

Here (and throughout the rest of this section) the error term
o(1) is with respect to ∆θ, namely, o(1) → 0 as ∆θ → 0.

Part B of (6) can be approximated similarly, except that
f0 and P ′

θ are replaced by f1 and Q′
θ. Therefore, (6) can be

written as a constrained minimization problem of a quadratic
function in f0 and f1 plus some error term:

min
(f0,f1)∈F

α (fᵀ
0∇ppD (Pθ ‖Pθ) f0 + 2fᵀ

0∇pqD (Pθ ‖Pθ)P
′
θ)

+ᾱ (fᵀ
1∇ppD (Qθ ‖Qθ) f1 + 2fᵀ

1∇pqD (Qθ ‖Qθ)Q
′
θ)

+αIP (θ) + ᾱIQ(θ) + o(1), (7)

where we use Lemma 4.1 and the fact that

∇pqD (Pθ ‖Pθ) = ∇qpD (Pθ ‖Pθ) .

Replacing f1 with −αf0/ᾱ, we see that (7) becomes a
constrained quadratic optimization problem in f0:

min
f0∈T0

fᵀ
0

(
α∇ppD (Pθ ‖Pθ) +

α2

ᾱ
∇ppD (Qθ ‖Qθ)

)
f0

+ 2αfᵀ
0 (∇pqD (Pθ ‖Pθ)P

′
θ −∇pqD (Qθ ‖Qθ)Q

′
θ)

+ αIP (θ) + ᾱIQ(θ) + o(1). (8)

Finally, we claim that the o(1) term in (8) can be ignored
and hence (8) can be solved as a quadratic function:

Lemma 4.4: As ∆θ → 0, the minimum of (8) converges to

−α (∇pqD (Pθ ‖Pθ)P
′
θ −∇pqD (Qθ ‖Qθ)Q

′
θ)

ᵀ
f∗∗
0 , (9)

where

f∗∗
0 = −

(
∇ppD (Pθ ‖Pθ) +

α

ᾱ
∇ppD (Qθ ‖Qθ)

)−1

· (∇pqD (Pθ ‖Pθ)P
′
θ −∇pqD (Qθ ‖Qθ)Q

′
θ) . (10)

By plugging f∗∗
0 into (9), together with some tedious

calculations (which can be found in Appendix of the full
version, we can see that (8) is indeed (2).

The proof of Theorem 3.2 is now complete.



V. ASYMPTOTIC KULLBACKLEIBLER DIVERGENCE

As the result in [3] suggests, the large deviation exponent of
anonymous hypothesis testing (i.e. to test P̃θ vs P̃φ) is (4), so
it is reasonable to guess the exact KLD is asymptotically equal
to (4). In this section we give a formal proof of Lemma 4.2,
which is based on the method of types.

Proof of Lemma 4.2: To evaluate

D
(
P̃θ

∥∥∥P̃φ

)
= EP̃θ

[
log

(
P̃θ(µn)

P̃φ(µn)

)]
, (11)

we notice that the log likelihood ratio (LLR) in (11) is a
function of µn, and by the law of large numbers, the density
of µn concentrates. Hence, if the LLR can be approximated by
some continuous function (independent of n), together with the
concentration of P̃θ, we can estimate the asymptotic behavior.

Part 1 (Asymptote of LLR): The asymptote of the LLR is
given by the lemma below (the proof can be found in Appendix
of the full version.)

Lemma 5.1: For any empirical distribution µn = ΠXn and

Pθ , (Pθ)
⊗n1(Qθ)

⊗n2 , Pφ , (Pφ)
⊗n1(Qφ)

⊗n2 ,

we have

log

(
P̃θ(µn)

P̃φ(µn)

)
= −nR0(µn) + nR1(µn) + o(n),

where

R0(µn) , min
V1,V2∈PX

αV1+ᾱV2=µn

αD (V1 ‖Pθ) + ᾱD (V2 ‖Qθ) ,

R1(µn) , min
U1,U2∈PX

αU1+ᾱU2=µn

αD (U1 ‖Pφ) + ᾱD (U2 ‖Qφ) .

Remark 5.1: The rate functions R0 and R1 are well-studied
in [3], and was proved to satisfy the following:

• They have compact domains: {µn : Ri(µn) < ∞} is
compact, for i = 0, 1.

• They are continuous functions with respect to `1 norm.
The compactness is essential because continuous in a compact
domain implies that R0 and R1 are bounded, say, ∀ i =
0, 1, Ri(µ) < B for some constant B > 0. In words, if R0(µ)
and R1(µ) are finite, they must be bounded by some constant.

Part 2 (Concentration of µn): Next, we argue that µn does
concentrate. In fact, µn can be written as the weighted sum
of two empirical distribution

µn =
n1

n
ΠXn1 +

n2

n
ΠXn2 ,

where Xn1 and Xn2 follow i.i.d. Pθ and Qθ respective. By
the uniform law of large number (Glivenko-Cantelli theorem),
ΠXn1 → Pθ and ΠXn2 → Qθ (here for simplicity, we use the
`1 norm as the metric), so µn → αPθ + ᾱQθ in `1. Thus for
arbitrary ε > 0 and δ > 0, we have

Pr {‖µn − (αPθ + ᾱQθ)‖1 < ε} > 1− δ (12)

for n > Mε,δ . For notational simplicity, set µ , αPθ + ᾱQθ.

Part 3 (Bounding KLD): Now let us bound (11). We first
note that the LLR is always finite according to the data-
processing inequality
1

n
D
(
P̃θ

∥∥∥P̃φ

)
≤ 1

n
D (Pθ ‖Pφ) = αD (Pθ ‖Pφ)+ᾱD (Qθ ‖Qφ) ,

so by Remark 5.1 it is bounded by a constant, say, B. Next,
(11) can be written as

1

n
EP̃θ

[
log

(
P̃θ(µn)

P̃φ(µn)

)]

=
1

n
Pr {‖µn − µ‖ ≤ ε}EP̃θ

[
log

(
P̃θ(µn)

P̃φ(µn)

)∣∣∣∣∣ ‖µn − µ‖ ≤ ε

]

+
1

n
Pr {‖µn − µ‖ > ε}EP̃θ

[
log

(
P̃θ(µn)

P̃φ(µn)

)∣∣∣∣∣ ‖µn − µ‖ > ε

]
(a)
≤ EP̃θ

[
1

n
log

(
P̃θ(µn)

P̃φ(µn)

)∣∣∣∣∣ ‖µn − µ‖ ≤ ε

]
+ δB

(b)
= EP̃θ

[−R0(µn) +R1(µn) + on(1)| ‖µn − µ‖ ≤ ε] + δB

(c)
≤ −R0(µ) +R1(µ) + ∆(ε) + on(1) + δB,

where (a) is due to (12), (b) is due to Lemma 5.1, and (c) is
due to the continuity of R0 and R1 (and thus ∆(ε) → 0 as
ε → 0). Notice that R0(µ) = 0 since one can easily choose
V1, V2 to be Pθ, Pφ. Also note that both ε and δ can be chosen
arbitrarily small as n tends to infinity. Therefore we obtain an
upper bound on (11), which is nR1(µ) + o(n). On the other
hand, by replacing B with −B, we also obtain a lower bound
(since the inequality (c) is due to the continuity). Finally, by
definition, R1(µ) is exactly the left term in (4).

The proof of Lemma 4.2 is now complete.
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APPENDIX

A. Proof of Lemma 5.1

To begin with, we identify the distribution of P̃. Let µn be an empirical distribution, and by definition

P̃ (µn) =
∑

xn:Πxn=µn

P(xn) = c(µn)
∑
π∈Sn

P (π (xn))
∣∣
for any xn with type µn

where c(µn) is a constant that normalized the repetition of counting. For example, if

µn =
[m1

n
,
m2

n
, ...,

md

n

]ᵀ
,

then c(µn) = ((m1!)(m2!) · · · (md!))
−1. Therefore,

log

(
P̃0(µn)

P̃1(µn)

)
= log

(∑
π P0 (π (xn))∑
π P1 (π (xn))

)∣∣∣∣
for any xn with type µn

. (13)

Without loss of generality, for each µn, we pick the representer xn as the sorted one, say,

xn =

a1, ..., a1︸ ︷︷ ︸
m1

, a2, ..., a2︸ ︷︷ ︸
m2

, ..., ad, ..., ad︸ ︷︷ ︸
md

 ,

assuming µn = [m1,m2, ...,md]
ᵀ
/n. Next, for an (unsorted) xn, the P0(x

n) is completely determined by the empirical

(Pθ)
⊗n1Pθ

xn a1 a2 ad· · ·

(Qθ)
⊗n2

________︸ ︷︷ ︸________︸ ︷︷ ︸ ________︸ ︷︷ ︸
m1 m2 md

Fig. 1: illustration of the representer

distribution of first n1 samples and the empirical distribution of the rest n2 samples. We use
(
m

(1)
1 , ...,m

(1)
d

)
and(

m
(2)
1 , ...,m

(2)
d

)
to denote these (unnormalized) product type of xn. See Figure 2 for illustration. Therefore, summation

(Pθ)
⊗n1Pθ

xn a1 ad· · ·
(Qθ)

⊗n2

________︸ ︷︷ ︸ ________︸ ︷︷ ︸
a1 ad· · ·________︸ ︷︷ ︸ ________︸ ︷︷ ︸

m(1)
1 m(1)

d m(2)
dm(2)

1

Fig. 2: illustration of the product type

over all π(xn) can be written as first summing over product types and then over all permutations which possess same product
type:

∑
π
P0 (π (xn)) =

∑
m(1),m(2)

 ∑
π:π(xn)∈m(1),m(2)

P0 (π (xn))


=

∑
m(1),m(2)

((
P0 (a1)

m
(1)
1 · · ·P0 (ad)

m
(1)
d

)(
Q0 (a1)

m
(2)
1 · · ·Q0 (ad)

m
(2)
d

)
·

((
m

(1)
1 !
)
· · ·
(
m

(1)
d !
))((

m
(2)
1 !
)
· · ·
(
m

(2)
d !
)))

(14)

≤ max
m(1),m(2)

((
P0 (a1)

m
(1)
1 · · ·P0 (ad)

m
(1)
d

)(
Q0 (a1)

m
(2)
1 · · ·Q0 (ad)

m
(2)
d

)
·((

m
(1)
1 !
)
· · ·
(
m

(1)
d !
))((

m
(2)
1 !
)
· · ·
(
m

(2)
d !
)))

.



On the other hand the number of product type is polynomial in n (less than n2d), so it is reasonable to upper bound (14) by
the maximum over product types:

(14) ≤ n2d max
m(1),m(2)

{(∏d
i=1 P0 (ai)

m
(1)
i

)(∏d
i=1 Q0 (ai)

m
(2)
i

)((
m

(1)
1 !
)
...
(
m

(1)
d !
))((

m
(2)
1 !
)
...
(
m

(2)
d !
))}

.

Hence we have

log

(∑
π

P0 (π (xn))

)

= max
m(1),m(2)

(
d∑

i=1

m
(1)
i logP0(ai) +

d∑
i=1

m
(2)
i logQ0(ai) +

d∑
i=1

log
(
m

(1)
i !
)
+

d∑
i=1

log
(
m

(2)
i !
))

+ o(n). (15)

Notice that the product type must satisfy the constraints
∑d

i=1 m
(1)
i = n1∑d

i=1 m
(2)
i = n2

∀i ∈ {1, ..., d}, m(1)
i +m

(2)
i = mi.

(16)

Therefore, by letting
V1 = [m

(1)
1 /n1, ...,m

(1)
d /n1]

ᵀ, V2 = [m
(2)
1 /n2, ...,m

(2)
d /n2]

ᵀ,

we see that
d∑

i=1

m
(1)
i logP0(ai) +

d∑
i=1

log
(
m

(1)
i !
)

(a)
=n1

(
d∑

i=1

m
(1)
i

n1
logP0(ai) +

d∑
i=1

m
(1)
i

n1
log
(
m

(1)
i

))
−

d∑
i=1

m
(1)
i + o(n1)

=n1

(
d∑

i=1

m
(1)
i

n1
logP0(ai) +

d∑
i=1

m
(1)
i

n1
log

(
n1

m
(1)
i

))
− n1 log n1 − n1 + o(n1)

=− n1D (V1 ‖P0)− n1 log n1 − n1 + o(n1), (17)

where (a) is due to the Stirling’s formula

log
(
m

(1)
i !
)
= m

(1)
i logm

(1)
i −m

(1)
i +O(logm

(1)
i ).

Similarly,
d∑

i=1

m
(2)
i logQ0(ai) +

d∑
i=1

log
(
m

(2)
i !
)
= −n2D (V2 ‖Q0)− n2 log n2 − n2 + o(n2). (18)

Recall that the third constraint in (16) requires V1, V2 to satisfy

n1V1 + n2V2 = nµn,

and combine (15), (17) and (18) we get

log

(∑
π

P0 (π (xn))

)
= − min

n1V1+n2V2=−nµn

(n1D (V1 ‖P0) + n2D (V2 ‖Q0))− n1 log n1 − n2 log n2 − n1 − n2 + o(n).

Similarly we also have

log

(∑
π

P1 (π (xn))

)
= − min

n1U1+n2U2=−nµn

(n1D (U1 ‖P1) + n2D (U2 ‖Q1))− n1 log n1 − n2 log n2 − n1 − n2 + o(n).

Plugging back into (13), we obtain

log

(
P̃0(µn)

P̃1(µn)

)
= log

(∑
π P0 (π (xn))∑
π P1 (π (xn))

)
= −

(
min

V1,V2∈PX
n1D(V1 ‖P0)+n2D(V2 ‖Q0)

s.t. n1
n V1+

n2
n V2=µn

)
+

(
min

U1,U2∈PX
n1D(U1 ‖P1)+n2D(U2 ‖Q1)

s.t. n1
n U1+

n2
n U2=µn

)
+ o(n).

Finally, by dividing both sides by n and letting n tends to infinity with n1/n → α as well as n2/n → 1 − α, the proof is
complete.



B. Calculation of (9)

We prove that by plugging

f∗∗
0 = −

(
∇ppD (Pθ ‖Pθ) +

α

ᾱ
∇ppD (Qθ ‖Qθ)

)−1

(∇pqD (Pθ ‖Pθ)P
′
θ −∇pqD (Qθ ‖Qθ)Q

′
θ) .

into
−α (∇pqD (Pθ ‖Pθ)P

′
θ −∇pqD (Qθ ‖Qθ)Q

′
θ)

ᵀ
f∗∗
0 , (19)

we obtain the solution of Theorem 3.2.
First by definition, we have

∇ppD (Pθ ‖Pθ) ,

[
∂2D (p ‖Pθ)

∂pi∂pj

]∣∣∣∣
p=Pθ

=


1

Pθ(a1)
0

. . .

0 1
Pθ(ad)

,


since

∂2D (p ‖Pθ)

∂pi∂pj
=

{
0, if i 6= j,

1
Pθ(ai)

, else.

Similarly,

∇qqD (Pθ ‖Pθ) =


1

Pθ(a1)
0

. . .

0 1
Pθ(ad)

,

 , and ∇pqD (Pθ ‖Pθ) = ∇qpD (Pθ ‖Pθ) =


− 1

Pθ(a1)
0

. . .

0 − 1
Pθ(ad)

.

 .

Therefore, f∗∗
0 becomes

− 1

α


1

αPθ(a1)
+ 1

ᾱQθ(a1)
0

. . .

0 1
αPθ(ad)

+ 1
ᾱQθ(ad)


−1

·




− 1
Pθ(a1)

0
. . .

0 − 1
Pθ(ad)

.


P

′
θ(a1)

...
P ′
θ(ad)

−


− 1

Qθ(a1)
0

. . .

0 − 1
Qθ(ad)

.


Q

′
θ(a1)

...
Q′

θ(ad)




=


ᾱPθ(a1)Qθ(a1)

αPθ(a1)+ᾱQθ(a1)
0

. . .

0 ᾱPθ(ad)Qθ(ad)
αPθ(ad)+ᾱQθ(ad)


−1


P ′

θ(a1)
Pθ(a1)

...
P ′

θ(ad)
Pθ(ad)

−


Q′

θ(a1)
Qθ(a1)

...
Q′

θ(ad)
Qθ(ad)


 .

Plugging back to (19), we see that

(19) =−




P ′
θ(a1)

Pθ(a1)

...
P ′

θ(ad)
Pθ(ad)

−


Q′

θ(a1)
Qθ(a1)

...
Q′

θ(ad)
Qθ(ad)




ᵀ


αᾱPθ(a1)Qθ(a1)
αPθ(a1)+ᾱQθ(a1)

0
. . .

0 αᾱPθ(ad)Qθ(ad)
αPθ(ad)+ᾱQθ(ad)





P ′
θ(a1)

Pθ(a1)

...
P ′

θ(ad)
Pθ(ad)

−


Q′

θ(a1)
Qθ(a1)

...
Q′

θ(ad)
Qθ(ad)




=−
d∑

i=1

αᾱPθ (ai)Qθ (ai)

αPθ (ai) + ᾱQθ (ai)

(
P ′
θ(ai)

Pθ(ai)
− Q′

θ(ai)

Qθ(ai)

)2

=−
d∑

i=1

αᾱ (P ′
θ(ai)Qθ(ai)−Q′

θ(ai)Pθ(ai))
2

(αPθ(ai) + ᾱQθ(ai))Pθ(ai)Qθ(ai)



=− αᾱ

d∑
i=1

(
(P ′

θ(ai))
2
Qθ(ai)

(αPθ(ai) + ᾱQθ(ai))Pθ(ai)
+

(Q′
θ(ai))

2
Pθ(ai)

(αPθ(ai) + ᾱQθ(ai))Qθ(ai)
− 2

P ′
θ(ai)Q

′
θ(ai)

αPθ(ai) + ᾱQθ(ai)

)

=− αᾱ

d∑
i=1

(
(P ′

θ(ai))
2
Qθ(ai)

(αPθ(ai) + ᾱQθ(ai))Pθ(ai)
+

(Q′
θ(ai))

2
Pθ(ai)

(αPθ(ai) + ᾱQθ(ai))Qθ(ai)
− 2

P ′
θ(ai)Q

′
θ(ai)

αPθ(ai) + ᾱQθ(ai)

)

=−
d∑

i=1

((
α
P ′
θ(ai)

2

Pθ(ai)
− α2 (P ′

θ(ai))
2

αPθ(ai) + ᾱQθ(ai)

)
+

(
ᾱ
Q′

θ(ai)
2

Qθ(ai)
− ᾱ2 (Q′

θ(ai))
2

αPθ(ai) + ᾱQθ(ai)

)
− 2

αᾱP ′
θ(ai)Q

′
θ(ai)

αPθ(ai) + ᾱQθ(ai)

)

=−
d∑

i=1

(
α
P ′
θ(ai)

2

Pθ(ai)
+ ᾱ

Q′
θ(ai)

2

Qθ(ai)

)
+

d∑
i=1

(
α2 (P ′

θ(ai))
2

αPθ(ai) + ᾱQθ(ai)
+

ᾱ2 (Q′
θ(ai))

2

αPθ(ai) + ᾱQθ(ai)
+ 2

αᾱP ′
θ(ai)Q

′
θ(ai)

αPθ(ai) + ᾱQθ(ai)

)

=−
d∑

i=1

(
α
(P ′

θ(ai))
2

Pθ(ai)
+ ᾱ

(Q′
θ(ai))

2

Qθ(ai)

)
+

d∑
i=1

(
(αP ′

θ(ai) + ᾱQ′
θ(ai))

2

αPθ(ai) + ᾱQθ(ai)

)
=− (αIP (θ) + ᾱIQ(θ)) + IM (θ),

where Mθ(x) , αPθ(x) + ᾱQθ(x) is the mixture distribution of two sources Pθ and Qθ.

C. Proof of Lemma 4.1

We prove that the following expressions of Fisher information are equivalent

(1) Epθ

[
− ∂2

∂θ2 log pθ(X)
]

(2) ∂2D(Pθ ‖Pφ)
∂φ2

∣∣
φ=θ

(3) P ′
θ
ᵀ∇qqD (Pθ ‖Pθ)P

′
θ.

“(2) = (1)”:

∂2D (Pθ ‖Pφ)

∂φ2

∣∣
φ=θ

=
∂2

∂φ2
Eθ

[
log

Pθ(X)

Pφ(X)

]∣∣∣∣
φ=θ

=
∂2

∂φ2
Eθ [− logPφ(X)]

∣∣∣∣
φ=θ

.

“(3) = (2)”:

∂2D (Pθ ‖Pφ)

∂φ2

∣∣∣∣
φ=θ

=
∂

∂φ

(
∂D (Pθ ‖Pφ)

∂φ

)∣∣∣∣
φ=θ

=
∂

∂φ

(
P ′
φ
ᵀ∇qD (Pθ ‖q)

∣∣
q=Pφ

)∣∣
φ=θ

=P ′′
θ
ᵀ∇qD (Pθ ‖q)

∣∣
q=Pθ

+ P ′
θ
ᵀ∇qqD (Pθ ‖Pθ)P

′
θ

(a)
=P ′

θ
ᵀ∇qqD (Pθ ‖Pθ)P

′
θ,

where (a) is due to the fact that the score function ∇qD (Pθ ‖q)
∣∣
q=Pθ

is a zero vector.

D. Proof of Lemma 4.3

First, by data process inequality, we have

1

(θ − φ)
2

(
1

n
D
(
P̃θ

∥∥∥P̃φ

))
≤ 1

(θ − φ)
2

(
1

n
D (Pθ ‖Pφ)

)
=

1

(θ − φ)
2 (αD (Pθ ‖Pφ) + ᾱD (Qθ ‖Qφ)) ,

so
1

(θ − φ)
2

(
1

n
D
(
P̃θ

∥∥∥P̃φ

))
(20)

is uniformly bounded. Together with the equicontinuous assumption, Arzelà-Ascoli theorem applies and hence (20) converges
uniformly. Therefore, we have

lim
n→∞

lim
φ→θ

1

(θ − φ)
2

(
1

n
D
(
P̃θ

∥∥∥P̃φ

))
= lim

φ→θ
lim

n→∞

1

(θ − φ)
2

(
1

n
D
(
P̃θ

∥∥∥P̃φ

))
,

which establishes Lemma 4.3



E. Proof of Lemma 4.4

For notational simplicity, let G(f0) denote the objective function of (8), f∗
0 denote argminf0∈T0

G(f0), and G̃(f0) denote
the objective function without o(1) in (8). We aim to show that∣∣∣G(f∗

0 )− G̃(f∗∗
0 )
∣∣∣ = o(1). (21)

To see this, observe that by the local approximation (Taylor expansion), we have for any f0,∣∣∣G(f0)− G̃(f0)
∣∣∣ = o(∆θ).

Therefore, (21) is proved by combining the following two together

G̃(f∗∗
0 ) ≤ G̃(f∗

0 ) ≤ G(f∗
0 ) + o(1),

G(f∗
0 ) ≤ G(f∗∗

0 ) ≤ G̃(f∗∗
0 ) + o(1).


