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Abstract—In this paper, we explore the fundamental limits
of heterogeneous distributed detection in an anonymous sensor
network with n sensors and a single fusion center. The fusion
center collects the single observation from each of the n sensors
to detect a binary parameter. The sensors are clustered into
multiple groups, and different groups follow different discrete
distributions under a given hypothesis. The key challenge for the
fusion center is the anonymity of sensors – although it knows the
exact number of sensors and the distribution of observations in
each group, it does not know which group each sensor belongs to.
It is hence natural to consider it as a composite hypothesis testing
problem. We focus on the Neyman-Pearson setting and give
upper and lower bounds of the error exponent of the worst-case
type-II probability of error as n tends to infinity, assuming the
number of sensors in each group is proportional to n. Our results
elucidate the price of anonymity in heterogeneous distributed
detection. The results are also applied to distributed detection
under Byzantine attacks, which hints that the conventional simple
hypothesis testing approach might be too pessimistic.
A full version of this paper is accessible at:

http://homepage.ntu.edu.tw/~ihwang/Eprint/isit18hd.pdf

I. INTRODUCTION

In wireless sensor networks, the cost of identifying indi-
vidual sensors increases drastically as the number of sensors
grows. For distributed detection [1], when the observations fol-
low i.i.d. distributions across all sensors, identifying individual
sensors is not very important. When the fusion center can fully
access the observations, the empirical distribution (types) of
the collected observation is a sufficient statistics. When the
communication between each sensor and the fusion center
is limited, for binary hypothesis testing it is asymptotically
optimal to use the same local decision function at all sensors
[2]. Hence, anonymity is not a critical issue for the classical
(homogeneous) distributed detection problem.

However, when the distributions of the observations are
heterogeneous, that is, the distribution of the observation varies
across sensors, sensor anonymity may deteriorate the perfor-
mance of distributed detection, even for binary hypothesis test-
ing. One such example is distributed detection under Byzantine
attack [3], where a fixed number of sensors are compromised
by malicious attackers and report fake observations following
certain distributions. Even if the fusion center is aware of the
number of compromised sensors and the attacking strategy that
renders worst-case detection performance (the least favorable
distribution as considered in [4]–[6]), it is more difficult to
detect the hidden parameter when the fusion center does not
know which sensors are compromised.

In this paper, we aim to quantify the performance loss due to
sensor anonymity in heterogeneous distributed detection, with
n sensors and a single fusion center. Each sensor (say sensor
i, i ∈ {1, ..., n}) has a single random observation Xi. The
goal of the fusion center is to estimate the hidden parameter
θ ∈ {0, 1} (that is, binary hypothesis testing) from the
collected observations. The distributions of the observations,
however, are heterogeneous – observations at different sensors
may follow different sets of distributions. In particular, we
assume that these n sensors are clustered into K groups
{I1, ..., IK}, and group Ik ⊆ {1, ..., n} comprises nαk

sensors, for k = 1, ...,K. Under hypothesis Hθ, θ ∈ {0, 1},

Xi ∼ Pθ;k, for i ∈ Ik.

Moreover, the sensors are anonymous, that is, the collected
observations at the fusion center is unordered. In other words,
although the fusion center is fully aware of the heterogeneity
of it observation, including the set of distributions {Pθ;k | θ ∈
{0, 1}, k = 1, ...,K} and {αk | k = 1, ...,K}, it does not
know what distribution each individual sensor will follow.

To overcome the difficulty of not knowing the exact dis-
tributions of the observations, we formulate the detection
problem as a composite hypothesis testing problem, where
the length-n vector observation follows a product distribution
within a finite class of n-letter product distributions under
a given parameter θ. The class consists of

(
n

nα1,...,nαK

)
possible product distributions, each of which follows one
of the

(
n

nα1,...,nαK

)
possible partitions of the sensors. The

fusion center takes all the possible partitions into consideration
when detecting the hidden parameter. We focus on a Neyman-
Pearson setting, where the goal is to minimize the worst-case
type-II probability of error such that the worst-case type-I
probability of error is not larger than a constant. As a first
step towards understanding the performance loss due to sensor
anonymity, our goal is to characterize the error exponent of the
minimum worst-case type-II probability of error as n → ∞
with {αk | k = 1, ...,K} being fixed.

Our main contribution is a set of upper and lower bounds
on the error exponent. For the achievability, we develop a
threshold test on the KullbackLeibler (KL) divergence from
a chosen distribution to the empirical distribution (type) of
the collected observations, similar to the Hoeffding test [7].
The resulting lower bound on the error exponent is the
minimization of a linear combination of KL divergences with
the k-th term being D (Uk ∥P1;k) and αk being the coefficient,



for k = 1, ...,K. The minimization is over all possible dis-
tributions U1, ..., UK such that

∑K
k=1 αkUk =

∑K
k=1 αkP0;k.

For the converse, we relax the composite testing problem to a
simple one, where the null hypothesis is a tailored mixture
of several n-letter heterogeneous product distributions, and
the alternative hypothesis is a specific n-letter heterogeneous
product distribution. The resulting upper bound on the error
exponent takes the same form as the lower bound except that
the constraint in the minimization is slightly relaxed.

As a by-product, we apply our results for K = 2 to
the distributed detection problem under Byzantine attack and
further obtain bounds on the worst-case type-II error exponent.
Compared with the worst-case exponent in an alternative
Bayesian formulation [3] where the observation of sensors are
assumed to be i.i.d. according to a mixture distribution, it is
shown that the worst-case exponent in the composite testing
formulation is strictly larger. This hints that the conventional
approach taken in [3] might be too pessimistic.

II. PROBLEM FORMULATION

Following the description of the setting in Section I, let us
formulate the composite hypothesis testing problem. Let σ(i)
denote the label of the group that sensor i belongs to. This
labeling σ(·), however, is not revealed to the fusion center.
Hence, the fusion center needs to consider all

(
n

nα1,...,nαK

)
possible σ : {1, ..., n} → {1, ...,K} satisfying

|{i | σ(i) = k}| = nαk, ∀ k = 1, ...,K, (1)

and decides whether the hidden θ is 0 or 1. For notational
convenience, let α denote the vector

[
α1 ... αK

]⊺
, and let

Sn,α denote the collection of all labelings satisfying (1).
Hence, the fusion center is faced with the following com-

posite hypothesis testing problem:

Hθ : Xn ∼ Pθ;σ ≜
∏n

i=1 Pθ;σ(i), for some σ ∈ Sn,α.

The observations take values in a finite alphabet X , and hence
Pθ;k ∈ PX for all θ ∈ {0, 1} and k ∈ {1, ...,K}, where PX
denote the collection of all possible distributions over X .

The worst-case type-I and type-II probability of error of a
decision rule ϕ are defined as

PF
(n)(ϕ) ≜ max

σ∈Sn,α

P0;σ {ϕ(Xn) = 1} (Type I)

PM
(n)(ϕ) ≜ max

σ∈Sn,α

P1;σ {ϕ(Xn) = 0} (Type II).

Our focus is on the Neyman-Pearson setting: find a decision
rule ϕ satisfying PF

(n)(ϕ) ≤ ϵ such that PM
(n)(ϕ) is mini-

mized, and let us use β(n)(ϵ,α) to denote the minimum type-
II probability of error. For the asymptotic regime, we aim to
explore if β(n)(ϵ,α) decays exponentially fast as n → ∞ with
α fixed, and characterize the corresponding error exponent.
For notational convenience, we define upper and lower bounds
on the exponent:

E
∗
(ϵ,α) ≜ lim supn→∞

{
− 1

n log2 β
(n)(ϵ,α)

}
E∗(ϵ,α) ≜ lim infn→∞

{
− 1

n log2 β
(n)(ϵ,α)

}
.

Remark 2.1: The original distributed detection problem [1],
[2], [6] involves local decision functions at the sensors to
address the limited communication between each sensor and
the fusion center. In this work, we neglect this part and assume
that the fusion center can collect all unordered observations,
in order to focus on the impact of anonymity.

III. MAIN RESULTS

A. Bounds on the Exponent

Theorem 3.1 (Lower Bound on the Exponent): ∀ ϵ ∈ (0, 1),

E∗(ϵ,α) ≥ min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P1;k)

subject to α⊺U = α⊺P0

(2)

Here U ≜
[
U1 ... UK

]⊺
denotes a K-tuple of distributions,

and similarly P0 ≜
[
P0;1 ... P0;K

]⊺
. Hence, α⊺U =∑K

k=1 αkUk denotes the mixture of distributions. For nota-
tional convenience, denote the specific mixture distribution
α⊺P0 as M0(α), representing the mixture of distributions in
H0 with respect to mixing parameter α.

Proof Sketch: To achieve the desired error exponent,
consider the following threshold test: we accept the null
hypothesis H0 when the type (empirical distribution) of
the observations, denoted as Πxn (see Appendix A for the
definition) , close to M0(α) within a threshold ϵn. More
precisely, the acceptance region is defined as A(n) = {xn :
D (Πxn ∥M0(α)) ≤ ϵn}. The key observation is that for all
samples Xn drawn from P0;σ , regardless of which σ, their type
converges to M0(α) according to the law of large numbers.
Hence if we properly choose a threshold ϵn, the acceptance
region A(n) defines a level-ϵ test (i.e. a test with PF

(n) ≤ ϵ)
for any ϵ ≥ 0. Note that we can choose ϵn → 0. It can be
shown that under H1, P1;σ′

{
A(n)

}
→ 2−n(E∗(ϵ,α)+o(1)) for

any σ′. Details are left in Appendix A of the full version.
Theorem 3.2 (Upper Bound on the Exponent): ∀ ϵ ∈ (0, 1),

E
∗
(ϵ,α) ≤ min

U∈(PX )K

B∈RK×K

∑K

k=1
αkD (Uk ∥P1;k)

subject to (B)i,j ≥ 0 ∀ i, j, Bα = α
U = B⊺P0

(3)

Proof: See Section IV. The proof of all related lemmas
can be found in Appendix B of the full version.

Remark 3.1: It can be readily seen that the minimization
problem in (3) is more restrictive than that in (2), since any
K-tuple of distributions U satisfying the constraint in (3), that
is, U = B⊺P0 and Bα = α for some B, will also satisfy the
constraint in (2): α⊺U = α⊺B⊺P0 = α⊺P0.

Though in general, the upper and lower bound do not
match, they do in some non-degenerate regimes, and the error
exponent can be specified there. Note that the upper and
lower bound are characterized by convex programs, due to
the convexity of KL divergence and probability simplex, so it
is not hard to compute the bounds.

For ease of illustration, in the rest of this section we restrict
our discussions and derivations to the special case of binary



alphabet, that is, |X | = 2, and K = 2 groups. Let Pθ;1 =
Ber(pθ) and Pθ;2 = Ber(qθ), for θ = 0, 1. Since there are
only two groups, we set α ≡

[
1− α α

]⊺. In Figure 1, we
give two examples where the bounds match and do not match,
respectively.
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Fig. 1: Price of anonymity

To quantify the price of anonymity, note that when the
sensors are not anonymous (termed the “informed” setting),
it becomes a simple hypothesis testing problem, and the error
exponent of the type-II probability of error in the Neyman-
Pearson setting is straightforward to derive:

E∗
Informed(α) =

∑K
k=1 αkD (P0;k ∥P1;k) .

Numerical examples are given in Figure 1 to illustrate the
price of anonymity versus the mixing parameter α. In general,
anonymity may cause significant performance loss. In certain
regimes, the type-II error exponent can even be pushed to zero.

B. Distributed Detection with Byzantine Attacks

We further apply the results to distributed detection with
Byzantine attacks, where the sensors are partitioned into
two groups. One group consists of n(1 − α) honest sensors
reporting true i.i.d. observations, while the other consists of
nα Byzantine sensors reporting fake i.i.d. observations. Here
we again neglect the local decision function and assume that
each sensor can report its observation to the fusion center.
The true observations follow Pθ i.i.d. across honest sensors,
while the fake ones follow Qθ i.i.d. across Byzantine sensors,
for θ = 0, 1. In general, Qθ is unknown to the fusion center,
but in terms of error exponent, one can find the least favorable
Q0, Q1 which minimize the error exponent. Hence, our results
can be applied here and arrive at the upper and lower bounds
for the worst-case type-II error exponent as follows:
Upper bound (Converse):

min
Q0,Q1,U,V ∈PX

B∈R2×2,(B)i,j≥0 ∀ i,j

(1− α)D (U ∥P1) + αD (V ∥Q1)

subject to B
[
1− α α

]⊺
=
[
1− α α

]⊺[
U V

]⊺
= B⊺ [P0 Q0

]⊺

Lower bound (Achievability):

min
Q0,Q1,U,V ∈PX

(1− α)D (U ∥P1) + αD (V ∥Q1)

subject to (1− α)U + αV = (1− α)P0 + αQ0

(4)

In [3], it assumes that each sensor can be Byzantine
with probability α, and hence it becomes a homogeneous
distributed detection problem, where the observation of each
sensor follows a mixture distribution (1− α)Pθ + αQθ under
hypothesis θ, i.i.d. across all sensors. The worst-case exponent
of type-II probability of error, as derived in [3], is hence

min
Q0,Q1∈PX

D ((1− α)P0 + αQ0 ∥(1− α)P1 + αQ1) . (5)

We see that the achievable type-II error exponent (4) in our
setting is always greater than that in the i.i.d. scenario (5)
(and is strictly larger for some α) due to the convexity of KL
divergence, implying the i.i.d. mixture model [3] might be too
pessimistic. Figure 2 shows the numerical evaluation.
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Fig. 2: Comparison between i.i.d. and our setting

IV. PROOF OF THE CONVERSE UPPER BOUND

In this section, we prove Theorem 3.2. To deal with the
composite hypothesis testing problem, we first argue that any
relaxed simple testing problem gives us an upper bound.
Suppose there exists a test ϕ such that

PF
(n)(ϕ) ≤ ϵ, and PM

(n)(ϕ) ≤ 2−nE ,

then the following simple testing problem must exist a level-ϵ
test with type-II error exponent greater than E:

H̃0 : Xn ∼
∑

σ′∈Sn,α

wσ′P0;σ′ v.s. H̃1 : Xn ∼ P1;σ, (6)

where wσ′ is an arbitrary prior distribution of P0;σ′ . The
reason is as follows: since PF

(n)(ϕ) ≤ ϵ, let A(n) be the H0-
acceptance region of this given test ϕ (i.e. ϕ−1(0)), we have
for any σ′ ∈ Sn,α, P0;σ′

{
A(n)

}
≥ 1− ϵ, and the same holds

for the mixture of all these P0;σ′ . Therefore, simply choosing
A(n) as the acceptance region gives us a level-ϵ test for the
relaxed testing problem. Moreover, since PM

(n)(ϕ) ≤ 2−nE ,
which means P1;σ

{
A(n)

}
≤ 2−nE for all σ, the type-II error

exponent is at least E for any σ.
Our approach to upper bound the type-II error exponent can

be summarized as follows. First, pick a specific P1;σ ∈ H1,



and mix P0;σ′ ∈ H0 with respect to a prior distribution wσ′

to obtain a relaxed simple hypothesis testing problem. Then,
apply a strong converse lemma [8] for simple hypothesis test-
ing, we obtain an upper bound for the type-II error exponent.
Hence, the problem boils down to choosing a good prior on
the hypothesis class H0 to minimize the type-II error exponent.

The rest of the proof is organized as follows:
1) First, construct a prior on H0 with respect to a mixing

matrix B ∈ RK×K . This matrix B determines those
P0;σ′ ∈ H0 upon which we choose to assign uniform
prior. For those P0;σ′ ∈ H0 that are not chosen by B,
we assign zero prior. Hence, B gives a specific relaxed
simple testing problem (6).

2) Then, apply the strong converse lemma (Lemma 4.2) to
obtain a multi-letter upper bound on the type-II error
exponent of the relaxed simple testing problem (6).

3) Finally, we single-letterize the multi-letter bound and
show that it is upper bounded by (3).

Part 1 (Construction of prior wσ′): First, let P1;σ be the
picked one in H1. Let Ii ≜ σ−1(i) denote the collection of
indices in group i with respect to the labeling σ.

Let B ≜
[
b1 ... bK

]
∈ RK×K , (B)i,j ≥ 0 ∀ i, j, be

the mixing matrix; that is, the i-th column bi characterizes
the component of mixed distribution in Ii. Note that B must
satisfy the constraint Bα = α, so that the total number of
elements in each group remains the same. For convenience,
assume for all i, j ∈ {1, ...,K}, nαi, n(B)i,jαi are all non-
negative integers, and denote them as ni and nij respectively.

Now, consider the following prior distribution on H0.
Put uniform prior on those P0;σ′ satisfying the condition∣∣I ′

j ∩ Ii
∣∣ = nij for all j, where I ′

j = σ′−1(j), as Figure 3
illustrates. In particular, we set the prior

wσ′ =
((

n1

n11,...,n1K

)
·
(

n2

n21,...,n2K

)
· · ·
(

nK

nK1,...,nKK

))−1

(7)

for all σ′ such that
∣∣I ′

j ∩ Ii
∣∣ = nij , and zero otherwise.

aaaaaaaaaaasfadsfwa
︸ ︷︷ ︸n1

aaaaaaaaaaasfadsfwa
︸ ︷︷ ︸n2 nK

aaaaaaaaaaasfadsfwa
︸ ︷︷ ︸

n11 n12 n1K n21 n2K nK1 nKK

P1;σ(x
n) : I1 IKI2 · · ·

P0;σ′(xn) : · · · · · · · · ·· · ·

I ′
1

I ′
2

I ′
K

Fig. 3: P0;σ′ which satisfying the condition
∣∣I ′

j ∩ Ii
∣∣ = nij

Then, we claim in the lemma below that the mixed dis-
tribution can be decomposed into the product measure with
respect to the partition Ii. For notational convenience, we
denote xIi ≜ {xj | j ∈ Ii} as the subsequence.

Lemma 4.1: If we choose the weights wσ′ as in equa-
tion (7), then∑

σ′∈Sn,α

wσ′

(∏n
j=1 P0;σ′(j)(xj)

)
=

K∏
i=1

( ∑
σ′
i∈Sni,bi

wσ′
i

∏
j∈Ii

P0;σ′
i(j)

(xj)

)
≜

K∏
i=1

Pm
0,bi

(xIi)

where σ′
i : Ii → {1, ...,K} is the labeling σ′ restricted on Ii.

The weights wσ′
i

satisfy the following equation:

wσ′
i
=
((

ni

ni1,...,niK

))−1

, if for all j,
∣∣σ′−1

i (j)
∣∣ = nij

and zero otherwise.
In other words, Pm

0,bi
(xIi) is the uniform mixture of all

distributions P0;σ′
i

defined on xIi , such that
∣∣σ′−1

i (j)
∣∣ = nij ,

as illustrated in Figure 4. Again, recall that nij ≜ nαi(B)i,j ,
so the matrix B determines the prior we put on H0.

I ′
1

I ′
2

I ′
K

Ii
ni

· · ·
ni1 ni2 niK

P0;σ′
i
(xIi) :

P1;σ(x) : · · ·

· · · · · ·

· · ·

Fig. 4: Example of P0;σ′
i
(xIi) satisfying

∣∣σ′−1
i (j)

∣∣ = nij .
Pm

0,bi
(xIi) are the uniform mixture over all such P0;σ′

i
(xIi).

Part 2 (Applying strong converse bound for simple hypoth-
esis testing): So far, we have relaxed the original composite
testing problem to the following simple testing problem:

H̃0 : Xn ∼
∑

σ′∈Sn,α

wσ′P0;σ′ =
K∏
i=1

Pm
0,bi

(xIi
) (8)

H̃1 : Xn ∼ P1;σ =
n∏

j=1

P1;σ(j)(xj) =
K∏
i=1

P⊗ni
1;i (xIi

), (9)

where the superscript ‘⊗ni’ denotes the i.i.d. extension. Next,
the strong converse lemma [8] below will then be used to find
upper bounds of the type-II error exponent.

Lemma 4.2 (Strong Converse [8]): For any probability
measures P,Q on sample space X , measurable set B ⊂ X ,
and any γ > 0, the following bound holds:

P {B} − 2γQ{B} ≤ P
{
log

P(dX)

Q(dX)
> γ

}
.

Now, let B(n) ⊆ Xn be the acceptance region of an
arbitrary level-ϵ test of H̃0 against H̃1, with type-II error
exponent being En. Plugging into (8) and (9), we have

K∏
i=1

Pm
0,bi

{
B(n)

}
≥ 1− ϵ, and

K∏
i=1

P⊗ni
1;i

{
B(n)

}
≤ 2−nEn .

For notational convenience, let Pn{dxn} and Qn{dxn} be the
measures in (8) and (9) respectively. By Lemma 4.2, we have
for any n,

nEn ≤ γn+log

 1

1− ϵ−Pn

(
log Pn(dXn)

Qn(dXn) > γn

)
 . (10)

Part 3 (Single-letterization): If γn is chosen such that

Pn

{
log Pn(dX

n)
Qn(dXn) > γn

}
= Pn

{
K∑
i=1

log
Pm

0,bi
(xIi

)

P
⊗ni
1;i (xIi

)
> γn

}
→ 0

(11)



as n → ∞, then (10) tells us lim inf
n→∞

γn/n is an upper bound
of the type-II error exponent.

The following proposition is the key to the single-
letterization step.

Proposition 4.1: For any δ > 0, choosing γn as below
satisfies the requirement of (11) (recall that M0(bi) ≜ b⊺i P0):

γn = n

(
K∑
i=1

αiD (M0(bi) ∥P1;i) + δ

)
(12)

and hence E
∗
(ϵ,α) ≤

∑K
i=1 αiD (M0(bi) ∥P1;i).

Proof of Proposition 4.1: To prove the proposition, we
begin with analyzing (11). Observe that{

K∑
i=1

log
Pm

0,bi
(xIi)

P⊗ni
1;i (xIi)

> n

(
K∑
i=1

αiD (M0(bi) ∥P1;i) + δ

)}

⊆

{
K∪
i=1

(
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> nαi (D (M0(bi) ∥P1;i) + δ)

)}
.

Then, applying union bound, we obtain

Pn

{
K∑
i=1

log
Pm

0,bi
(xIi)

P⊗ni
1;i (xIi)

>
K∑
i=1

ni (D (M0(bi) ∥P1;i) + δ)

}

≤
K∑
i=1

Pn

{
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> ni (D (M0(bi) ∥P1;i) + δ)

}
.

Our goal is to show that for all Ii and δ > 0,

Pn

{
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> ni (D (M0(bi) ∥P1;i) + δ)

}
→ 0

(13)
as n → ∞. Note that Pn is mixture of probability measures
defined on Xn, but the event{

log
Pm

0,bi
(xIi

)

P
⊗ni
1;i (xIi

)
> ni (D (M0(bi) ∥P1;i) + δ)

}
only depends on xIi = {xj | j ∈ Ii}. According to
Lemma 4.1, Pn can be decomposed into a product measure
with respect to Ii′ , that is,

Pn =
∑

σ′∈Sn,α

wσ′

(∏n
j=1 P0;σ′(xj)

)
=
∏K

i=1 P
m
0,bi

(xIi),

and hence after marginalized over all Ii′ , i′ ̸= i, (13) can be
written as

Pm
0,bi

{
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> ni (D (M0(bi) ∥P1;i) + δ)

}
.

With the above manipulations, to show that (13) holds,
we prove the following key lemma. With this lemma, (13)
converges to 0, and thus (11) holds.

Lemma 4.3: Let Pm
0,bi

(xIi) be the mixture defined on xIi

as described before, and P⊗ni
1;i be the i.i.d. extension of single-

letter distribution P1;i. Then as n → ∞,

Pm
0,bi

{
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> ni (D (M0(bi) ∥P1;i) + δ)

}
→ 0.

The proof of this lemma involves typical sequences and
Chebyshev inequality. The details can be found in Appendix B
of the full version.

Notice that we only require that bi be a valid mixture vector,
that is, Bα = α and (B)i,j ≥ 0 for all i, j ∈ {1, ...,K}.
Hence the upper bound can be chosen as the minimum over
all feasible B, which establishes Theorem 3.2.

V. CONCLUSION

In this paper, we explore the heterogeneous distributed
detection problem with sensor anonymity. To address sensor
anonymity, a composite hypothesis testing approach is taken.
Focusing on the Neyman-Pearson setting, we prove non-trivial
upper and lower bounds of the worst-case type-II error expo-
nent. Unlike the settings considered in robust hypothesis test-
ing literatures [4]–[6], since the hypothesis classes considereds
in our framework is discrete, the least favorable distribution
might not exist. To circumvent the difficulty, for achievability
we propose a type-based test similar to the Hoeffding test [7].
For the converse, we relax the composite testing problem to a
tailed simple testing problem and prove the single-letterization
of the error exponent lower bound using typical sequences and
Chebyshev inequality.

In the follow-up work [9], we further specified the optimal
test, termed mixture likelihood ratio test, which is a random-
ized threshold test based on the ratio of the uniform mixture
of all the possible distributions under one hypothesis to that
under the other hypothesis. Moreover, we showed that the
achievability bound (2) in this version is indeed tight, closing
the gap between the upper and lower bounds.
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APPENDIX A
PROOF OF ACHIEVABILITY

Let us introduce some notations.
• First, recall that

Mθ (α) ≜
K∑
i=1

αkPθ;k, where α = [α1, ..., αK ]
⊺

(n1, ..., nK) ≜ (nα1, ..., nαK) .

• For a sequence xn ∈ Xn, where X = {a1, a2, ..., ad}, its type (empirical distribution) is defined as

Πxn = [π(a1|xn), π(a2|xn), ..., π(ad|xn)] ,

where π(ai|xn) is the frequency of ai in the sequence xn, that is,

π(ai|xn) =
1

n

n∑
j=1

1{xj=ai}.

• For a given length n, we use Pn to denote the collection of possible "n-type" of length-n sequences. In other words,

Pn ≜
{[

i1
n
,
i2
n
, ...,

id
n

] ∣∣∣∣∀i1, ..., id ∈ N ∪ {0}, i1 + i2 + · · ·+ id = n

}
.

• Let U ∈ Pn be an n-type. The type class Tn(U) is the set of all length-n sequences with type U ,

Tn(U) ≜ {xn ∈ Xn | Πxn = U} .

Before proving the achievable bound, let us consider the following lemma.
Lemma A.1: ∀ϵn > 0 and ∀σ ∈ Sn,α,

P0;σ {Xn : D (ΠXn ∥M0 (α)) > ϵn} < 2−n(ϵn− |X|
n (log(n1+1)+···+log(nK+1)))

Lemma A.2: Let R ∈ Pn and define the region A(n)
R ≜ {xn : D (Πxn ∥R) ≤ ϵn} ⊆ Xn. Then for all σ ∈ Sn,α,

P1;σ

{
A(n)

R

}
≤

(
K∏

k=1

|Pnk
|

)
2−nD∗

n = 2−n(D∗
n+o(1)),

where D∗
n = min

U∈Pn1×···×Pnk

D(α⊺U ∥R)≤ϵn

α1D (U1 ∥P1;1) + · · ·+ αKD (UK ∥P1;K) .

Note that here we use α⊺U to denote
∑K

k=1 αkUk.
Moreover, if lim

n→∞
ϵn → 0, then we have

lim
n→∞

D∗
n = min

U∈(PX )K

α⊺U=R

α1D (U1 ∥P1;1) + · · ·+ αKD (UK ∥P1;K) . (14)

Proof of Thoerem 3.1: The acceptance region with respect to test ϕ is A(n)
ϕ = {xn | D (Πxn ∥M0 (α)) ≤ ϵn}. Hence

applying lemma A.1 with

ϵn =
|X |
n

(log(n1 + 1) + ...+ log(nK + 1)) + log

(
1

ϵ

)
/n,

we see that for any σ ∈ Sn,α,

P0;σ

{(
A(n)

ϕ

)c}
= P0;σ {Xn : D (Πxn ∥M0 (α)) > ϵn}

< 2−n(ϵn− |X|
n (

∑K
k=1 log(nk+1)))

= 2− log( 1
ϵ ) = ϵ,

and thus
PF

(n)(ϕ) ≤ ϵ.



Second, observe that ϵn → 0 as n → ∞. Applying lemma A.2 and plugging in R = M0 (α), we obtain

E∗(ϵ,α) ≥ min
U∈(PX )K

∑K

k=1
αkD (Uk ∥P1;k)

subject to α⊺U = α⊺P0

(15)

which completes the proof.

APPENDIX B
PROOF OF TECHNICAL LEMMAS

Lemma 4.1: If we choose the weights wσ′ as in equation (7), then∑
σ′∈Sn,α

wσ′

(∏n
j=1 P0;σ′(j)(xj)

)
=

K∏
i=1

( ∑
σ′
i∈Sni,bi

wσ′
i

∏
j∈Ii

P0;σ′
i(j)

(xj)

)
≜

K∏
i=1

Pm
0,bi

(xIi)

where σ′
i : Ii → {1, ...,K} is the labeling σ′ restricted on Ii. The weights wσ′

i
satisfy the following equation:

wσ′
i
=
((

ni

ni1,...,niK

))−1

, if for all j,
∣∣σ′−1

i (j)
∣∣ = nij

and zero otherwise.
proof of Lemma 4.1: Recall that

wσ′ =


1

( n1
n11,...,n1K

)·( n2
n21,...,n2K

)···( nK
nK1,...,nKK

)
, if

∣∣Ii ∩ I ′
j

∣∣ = nij

0, else

and

wσ′
i
=


1

( ni
ni1,...,niK

)
, if

∣∣∣(σ′
i)

−1
(j)
∣∣∣ = nij

0, else
.

With a slight abuse of notation, let σ′
i be the mapping σ′ restrict on Ii, that is,

σ′
i : Ii → {1, ...,K}, σi(j) = σ(j), ∀j ∈ Ii.

Then we have

wσ =
K∏
i=1

wσ′
i
,

and ∑
σ′∈Sn,α

wσ′

 n∏
j=1

P0;σ′(j)(xj)


=

∑
σ′∈Sn,α

(
K∏
i=1

wσ′
i

) K∏
i=1

∏
j∈Ii

P0;σ′(j)(xj)


=

∑
σ′∈Sn,α

 K∏
i=1

wσ′
i

∏
j∈Ii

P0;σ′(j)(xj)


=

 ∑
σ′
1∈Sn1,b1

· · ·
∑

σ′
K∈SnK,bK

 K∏
i=1

wσ′
i

∏
j∈Ii

P0;σ′(j)(xj)


=

K∏
i=1

 ∑
σ′
i∈Sni,bi

wσ′
i

∏
j∈Ii

P0;σ′
i(j)

(xj)

 .



Lemma 4.3: Let Pm
0,bi

(xIi) be the mixture defined on xIi as described before, and P⊗ni
1;i be the i.i.d. extension of single-letter

distribution P1;i. Then as n → ∞,

Pm
0,bi

{
log

Pm
0,bi

(xIi)

P⊗ni
1;i (xIi)

> ni (D (M0(bi) ∥P1;i) + δ)

}
→ 0.

proof of Lemma 4.3: Recall that

Pm
0,bi

(xIi) ≜

 ∑
σ′
i∈Sni,bi

wσ′
i

∏
j∈Ii

P0;σ′
i(j)

(xj)


where

wσ′
i
=


1

( ni
ni1,...,niK

)
, if

∣∣∣(σ′
i)

−1
(j)
∣∣∣ = nij

0, else.

WLOG, we assume Ii = {1, ..., ni}, and omit the subscript Ii for convenience. Also, we use P0;σ′
i

to denote the product
measure defined on Ii :

P0;σ′
i
≜
∏
j∈Ii

P0;σ′
i(j)

(xj)

( therefore Pm
0,bi

(xIi) =
∑

σ′
i∈Sni,bi

wσ′
i
P0;σ′

i
. ) Now, (4.3) can be written as

Pm
0,bi

{
log

Pm
0,bi

(Xni)(
P⊗ni
1;i

)
(Xni)

> ni (D (M0(bi) ∥P1;i) + δ)

}
(16)

=Pm
0,bi

{
log

Pm
0,bi

(Xni)

(M0(bi))⊗ni (Xni)
+ log

(M0(bi))
⊗ni (Xni)(

P⊗ni
1;i

)
(Xni)

> ni

(
δ

2

)
+ ni

(
D (M0(bi) ∥P1;i) +

δ

2

)}
(17)

≤Pm
0,bi

{
log

Pm
0,bi

(Xni)

(M0(bi))⊗ni (Xni)
> ni

(
δ

2

)}
︸ ︷︷ ︸

(1)

+Pm
0,bi

{
log

(M0(bi))
⊗ni (Xni)(

P⊗ni
1;i

)
(Xni)

> ni

(
D (M0(bi) ∥P1;i) +

δ

2

)}
︸ ︷︷ ︸

(2)

. (18)

We claim that both (1) and (2) converge to 0 as n → ∞. Before continuing the rest of the proof, we first sketch our strategies
of bounding equation (18).
Bounding term (1) : The idea is constructing a high probability set, actually exact the typical set, and show that every element
in this high probability set satisfies the inequality. The key observation here is that the typical set with respect to i.i.d. measure
(M0(bi))

⊗ni is also a high probability set under the measure Pm
0,bi

.

• First, find a typical set T (ni)
δ′ ((M0(bi))

⊗ni), such that

Pm
0,bi

{
T (ni)
δ′

}
→ 1.

• Then we show that with properly choose δ′, we have the following fact:

∀xni ∈ T (ni)
δ′ , log

Pm
0,bi

(M0(bi))⊗ni
(xni) ≤

(
ni

δ

2

)
,

and hence concludes the vanishing probability of (1) as n → ∞.
Bounding term (2) :

• Observe that the second part of (18) can be rewritten as

Pm
0,bi

 1

ni

ni∑
j=1

f(Xi) > EPm
0,bi

[f(X1)] +
δ

2

 , where f(·) is the LLR.

However, since Pm
0,bi

is not product measure, we cannot apply law of large number directly.
• Fortunately, leveraging the fact that Pm

0,bi
is close to i.i.d. distribution (M0(bi))

⊗ni , we are able to show a variant of
weak law of large number, and thus prove (2) is vanishing.

Part 1 (Bounding term (1)): Consider the δ′-typical set under (M0(bi))
⊗ni defined as below:

T (ni)
δ′ ≜ {x ∈ Xni | |π(aℓ|x)−M0(bi)(aℓ)| ≤ δ′M0(bi)(aℓ)} .



Fact B.1: According to the AEP, we have

∀x ∈ T (ni)
δ′ , 2−niH(M0(bi))(1+δ′) ≤ (M0(bi))

⊗ni(x) ≤ 2−niH(M0(bi)(1−δ′)

Fact B.2: The cardinality bounds gives us ∣∣∣T (ni)
δ′

∣∣∣ < 2niH(M0(bi))(1+δ′)

Then, according to Lemma A.1, P0;σ′
i
{T (ni)

δ′ } → 1 for all δ′ > 0 and k ∈ {1, ...,K}. Thus we have the following fact:
Fact B.3:

Pm
0,bi

{T (ni)
δ′ } =

∑
σ′
i

wσ′
i
P0;σ′

i
{T (ni)

δ′ } → 1, as ni → ∞.

That is, for any γ > 0,
Pm

0,bi
{T (ni)

δ′ } > 1− γ,

as ni large enough.
Second, we show that under Pm

0,bi
, AEP also holds. Let x,x′ ∈ T (ni)

δ′ , then one can always find a permutation τ :
{1, ..., ni} → {1, ..., ni}, such that

dH(x,x′
τ ) ≤ 2niδ

′, where x′
τ ≜ (x′

τ(1), ..., x
′
τ(ni)

).

The is because x,x′ ∈ T (ni)
δ′ implies

|π(aℓ|x)− π(aℓ|x′)| ≤ |π(aℓ|x)−M0(bi)(aℓ)|+ |π(aℓ|x′)−M0(bi)(aℓ)| ≤ 2δ′M0(bi)(aℓ),

so there exists a permutation τ such that

dH(x,x′
τ ) ≤ ni

d∑
ℓ=1

|π(aℓ|x)− π(aℓ|x′)| ≤ ni

d∑
ℓ=1

2δ′M0(bi)(aℓ) = 2niδ
′.

Observe that

P0;σ(x)

P0;σ(x′
τ )

=
P0;σ(1)(x1) · P0;σ(2)(x2) · · ·P0;σ(K)(xK)

P0;σ(1)(xτ(1)) · P0;σ(2)(xτ(2)) · · ·P0;σ(K)(xτ(K))
≤
(
max
i,j,ℓ,m

P0;i(aℓ)

P0;j(am)

)2niδ
′

≜ ∆niδ
′

(19)

Note that ∆ ≥ 1. Now we claim the same bound also holds on the mixture measure Pm
0,bi

=
∑
σ′
i

wσ′
i
P0;σ′

i
. The reason is that

because the weights wσ′
i

we construct is uniform, it is permutation invariant. That is, for all permutation τ ,

Pm
0,bi

(xτ ) =
∑
σ′
i

wσ′
i
P0;σ′

i
(xτ ) =

∑
σ′
i

wσ′
i◦τ−1P0;σ′

i◦τ−1(x) =
∑
σ′
i

wσ′
i
P0;σ′

i
(x) = Pm

0,bi
(x), (20)

where the third equality holds due to the mixture measure is permutation invariant. Therefore, according to (19) and (20), we
have for all x,x′ ∈ T (ni)

δ′ ,
Pm

0,bi
(x)

Pm
0,bi

(x′)
=

Pm
0,bi

(x)

Pm
0,bi

(x′
τ )

=

∑
σ′
i
wσ′

i
P0;σ′

i
(x)∑

σ′
i
wσ′

i
P0;σ′

i
(x′

τ )
≤ ∆niδ

′
.

Similar results hold for the lower bound ∆−niδ
′
. Again, we write it as the following fact:

Fact B.4: For all x,x′ ∈ T (ni)
δ′

∆−niδ
′
≤

Pm
0,bi

(x)

Pm
0,bi

(x′)
≤ ∆niδ

′

According to the cardinality bound (fact B.2) and the probability bound (fact B.3), we obtain for any γ > 0,

1− γ < Pm
0,bi

{T (ni)
δ′ } =

∑
x∈T (ni)

δ′

Pm
0,bi

(x) ≤
∣∣∣T (ni)

δ′

∣∣∣ min
x∈T (ni)

δ′

Pm
0,bi

(x)∆niδ
′
≤ 2niH(M0(bi))(1+δ′) min

x∈T (ni)

δ′

Pm
0,bi

(x)∆niδ
′

Rearrange the equation, we obtain

min
x∈T (ni)

δ′

Pm
0,bi

(x) ≥ 2−niH(M0(bi))(1+δ′+δ′ log∆+o(1)). (21)

Similar trick can be used to give an upper bound on max
x∈T (ni)

δ′
Pm

0,bi
(x).



Fact B.5: for all x,x′ ∈ T (ni)
δ′ ,

2−niH(M0(bi))(1+δ′+δ′ log∆+o(1)) ≤ Pm
0,bi

(x) ≤ 2−niH(M0(bi))(1−δ′−δ′ log∆+o(1))

Finally, according to Fact B.1 and Fact B.5, we see that

∀x ∈ T (ni)
δ′ , log

Pm
0,bi

(M0(bi))⊗ni
(x) ≤ niδ

′(2 + log∆) + o(n).

Choosing δ′ < δ
4+2 log∆ , we obtain that

∀x ∈ T (ni)
δ′ , log

Pm
0,bi

(M0(bi))⊗ni
(x) ≤ ni

(
δ

2

)
,

for ni large enough. Also, for ni large enough, Pm
0,bi

{T (ni)
δ′ } → 1; hence we conclude

Pm
0,bi

{
log

Pm
0,bi

(M0(bi))⊗ni
(x) > ni

(
δ

2

)}
→ 0.

Part 2 (Bounding term (2)): In the second part of the proof, our goal is to give a similar result as law of large number
under the mixture measure:

1

ni
log

(M0(bi))
⊗ni

P⊗ni
1;i

(Xni)
P→ D (M0(bi) ∥P1;i) .

Note that the mixed measure Pm
0,bi

has identical marginal distribution M0(bi). Rewriting the above equation, it is equivalent
to prove

Pm
0,bi

 1

ni

ni∑
j=1

f (Xj) > EX∼M0(bi) [f (X)] +
δ

2

→ 0. (22)

where we denote log (M0(bi))
P1;i

(·) as f(·) for simplicity. Although Xni ∼ Pm
0,bi

is not i.i.d. measure, we can still apply

Chebyshev’s inequality on (22) and obtain a similar result. Hence it suffices to show that Var
(

1
ni

∑ni

j=1 f(Xj)
)
→ 0. Notice

that

Var

 1

ni

ni∑
j=1

f(Xj)

 =
1

ni
VarX∼M0(bi) (f(X)) +

1

n2
i

∑
ℓ,m∈{1,...,K}

Cov (f(Xℓ), f(Xm)) ,

and thus we only need to show that for all j, k ∈ {1, ..., ni} such that j ̸= k, Cov (f(Xj), f(Xk)) → 0 as n → ∞.
This statement is intuitively true, since the pairwise density of Xj , Xk converges to independent distribution, and hence the
covariance must converge to 0. In the below we give a proof. First, note that the single-letter marginal distribution

PXi = PXj = M0(bi).

With a slight abuse of notation, we omit the subscript i, denoting as M0(b) = (b1P0;1 + ... + bKP0;K). Now, consider the
joint density between Xi, Xj are∑

xl,l ̸=j,k

Pm
0,b(x1, ..., xni) =

∑
xl,l ̸=j,k

∑
σ

wσP0;σ(x1, ..., xni)

=
∑

ℓ,m∈{1,...,K},ℓ ̸=m

(
ni−2

ni1,...,niℓ−1,...,nim−1,...,nik

)(
ni

ni1,...,niK

) P0;ℓ(Xj)P0;m(Xk) +
∑

ℓ∈{1,...,K}

(
ni−2

ni1,...,niℓ−2,...,nik

)(
ni

ni1,...,niK

) P0;ℓ(Xj)P0;ℓ(Xk)

Since we have nij = nibj , rewritting the above equation, we obtain that the joint density between Xj , Xk is

P (Xj , Xk) =
∑

ℓ,m∈{1,...,K},ℓ̸=m

nℓnm

ni(ni − 1)
P0;ℓ(Xj)P0;m(Xk)

=
∑

ℓ,m∈{1,...,K},ℓ̸=m

ni

ni − 1
bℓbmP0;ℓ(Xj)P0;m(Xk) +

∑
ℓ∈{1,...,K}:bℓ ̸=0

ni − 1/bℓ
ni − 1

b2ℓP0;ℓ(Xj)P0;m(Xk).

Besides, the product of marginal distibution of Xj , Xk is

P (Xj)P (Xk) = M0(b)(Xj)M0(b)(Xk) =
∑
ℓ,m

bℓbmP0;ℓ(Xj)P0;m(Xk).



Bound the covariance as below:

|Cov (f(Xj), f(Xk))| = |Ef(Xj)f(Xk)− Ef(Xj)Ef(Xk)|

=

∣∣∣∣∣∣
∑

Xj ,Xk

[(P (Xj , Xk)− P (Xj)P (Xk)) f(Xj)f(Xk)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Xj ,Xk

∑
ℓ̸=m

1

ni − 1
bℓbmP (Xj)P (Xk) +

∑
ℓ:bℓ ̸=0

1− 1/bℓ
ni − 1

b2ℓP (Xj)P (Xk)

 f(Xj)f(Xk)

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣maxℓ:bℓ ̸=0
1
bℓ

+ 1

ni − 1

∣∣∣∣∣∑
ℓ,m

bℓbmP (Xj)P (Xk)f(Xj)f(Xk)

= 2

∣∣∣∣∣maxℓ:bℓ ̸=0
1
bℓ

+ 1

ni − 1

∣∣∣∣∣ (EX∼M0(b)f(X)
)2

= 2

∣∣∣∣∣maxℓ:bℓ ̸=0
1
bℓ

+ 1

ni − 1

∣∣∣∣∣D (M0(bi) ∥P1;i)
2 → 0,

as ni → ∞. Applying Chebyshev’s inequality, we establish (22), and thus concludes the proof of part (2).

Lemma A.1: ∀ϵn > 0 and ∀σ ∈ Sn,α,

P0;σ {Xn : D (ΠXn ∥M0 (α)) > ϵn} < 2−n(ϵn− |X|
n (log(n1+1)+···+log(nK+1)))

Proof: Recall that we denote nαk as nk.

P0;σ {Xn : D (ΠXn ∥M0 (α)) > ϵn}

=
∑

V ∈Pn:D(V ∥M0(α))>ϵn

P0;σ {Tn(V )}

=
∑

(U1,...,UK)∈Pn1×···×PnK
:

D(
∑

k αkUk ∥M0(α))>ϵn

K∏
k=1

P⊗nk

0;k {Tnk
(Uk)}

≤
∑

(U1,...,UK)∈Pn1×···×PnK
:

D(
∑

k αkUk ∥M0(α))>ϵn

K∏
k=1

2−nkD(Uk ∥P0;k)

=
∑

(U1,...,UK)∈Pn1×···×PnK
:

D(
∑

k αkUk ∥M0(α))>ϵn

2−n
∑

k αkD(Uk ∥P0;k)

By the convexity of KL divergence,∑
k

αkD (Uk ∥P0;k) ≥ D

(∑
k

αkUk

∥∥∥∥∥∑
k

αkP0;k

)
= D (V ∥M0 (α)) > ϵn,

so we obtain

P0;σ {Xn : D (ΠXn ∥M0 (α)) > ϵn}

<
∑

(U1,...,UK)∈Pn1×···×PnK
:

D(
∑

k αkUk ∥M0(α))>ϵn

2−nϵn

≤

(
K∏

k=1

|Pnk
|

)
2−nϵn

≤ 2−n(ϵn− |X|
n (log(n1+1)+···+log(nK+1))).

Lemma A.2: Let R ∈ Pn and define the region A(n)
R ≜ {xn : D (Πxn ∥R) ≤ ϵn} ⊆ Xn. Then for all σ ∈ Sn,α,



P1;σ

{
A(n)

R

}
≤

(
K∏

k=1

|Pnk
|

)
2−nD∗

n = 2−n(D∗
n+o(1)),

where D∗
n = min

U∈Pn1×···×Pnk

D(α⊺U ∥R)≤ϵn

α1D (U1 ∥P1;1) + · · ·+ αKD (UK ∥P1;K) .

Note that here we use α⊺U to denote
∑K

k=1 αkUk.
Moreover, if lim

n→∞
ϵn → 0, then we have

lim
n→∞

D∗
n = min

U∈(PX )K

α⊺U=R

α1D (U1 ∥P1;1) + · · ·+ αKD (UK ∥P1;K) . (14)

Proof:
Part 1: Observe that

P1;σ

{
A(n)

R

}
=P1;σ {Xn : D (ΠXn ∥R) ≤ ϵn}

=
∑

Uk∈Pnk
:

D(
∑

k αkUk ∥R)≤ϵn

P1;σ {Tn(V )}

=
∑

Uk∈Pnk
:

D(
∑

k αkUk ∥R)≤ϵn

K∏
k=1

P⊗nk

1;k {Tnk
(Uk)}

≤
∑

Uk∈Pnk
:

D(
∑

k αkUk ∥R)≤ϵn

2−n
∑

k αkD(Uk ∥P1;k)

≤
∑

Uk∈Pnk
:

D(
∑

k αkUk ∥R)≤ϵn

2−nD∗
n

≤

(
K∏

k=1

|Pk|

)
2−nD∗

n ≤ 2−n(D∗
n+o(1)),

where the last inequality holds since the cardinality of type is sub-linear in n.
Part 2: To show that

lim
n→∞

D∗
n = min

U∈(PX )K

α⊺U=R

α1D (U1 ∥P1;1) + · · ·+ αKD (UK ∥P1;K) , (23)

we observe that {
Uk ∈ Pnk

| V =
∑
k

αkUk, D (V ∥R) ≤ ϵn

}
→

{
Uk ∈ PX | R =

∑
k

αkUk

}
,

once ϵn → 0, due to the fact that D (V ∥R) = 0 ⇐⇒ V = R. More rigorously, define

A(n) ≜ {U ∈ Pn1 × · · · × PnK | D (α⊺U ∥R) ≤ ϵn} ,

and A∗ ≜
{
U ∈ PK

X | α⊺U = R
}
.

Then we claim that
A∗ =

∩
i>0

closure(
∪
n>i

A(n)).

1) "⊆" part: ∀U∗ ∈ A∗, one can always find a sequence U1,U2, ...,Uj , ..., such that {Uj} → U∗, and Uj ∈ A(j) (for
example, rounding U∗). Therefore, {Uj}j>i guarantees U∗ ∈ closure

(∪
n>i A(n)

)
.

2) "⊇" part: ∀ Ũ /∈ A∗, D
(
α⊺Ũ

∥∥∥R) ≜ d > 0. Hence there exists M large enough, such that Ũ /∈ closure
(∪

n>M A(n)
)
,

by the fact that ϵn → 0 and the continuity of KL-divergence.



For notational convenience, define the function

D(U) = D(U1, ..., UK) ≜
∑
k

αkD (Uk ∥P1;k) .

Therefore, we have
D∗

n = min
U∈A(n)

D(U) ≥ min
closure(

∪
k>n A(k))

D(U).

This implies
lim inf
n→∞

D∗
n ≥ min∩

n>0 closure(
∪

k>n A(k))
D(U) = min

A∗
D(U).

On the other hand, suppose minA∗ D(U) = D(U∗), U∗ ∈ A∗ (such U∗ always exists since A∗ is a compact region in
RK×d). Then there exists a sequence {Ui} → U∗, such that Ui ∈ A(i). Hence for i, we see that

D∗
i = min

A(i)
D(U) ≤ D(Ui),

and thus
lim sup
i→∞

D∗
i ≤ lim

i→∞
D(Ui) = D(U∗) = min

A∗
D(U),

which completes the proof.


