Partial Data Extraction via Noisy Histogram Query: The Information Theoretic Bounds

Wei-Ning Chen, joint work with Prof. I-Hsiang Wang National Taiwan University

Jun, 2017

- Query with the curator
- Certain types of queries are allowed

- Query with the curator
- Certain types of queries are allowed
 - Subset query

- Query with the curator
- Certain types of queries are allowed
 - Subset query
 - Statistical information of subset

- Query with the curator
- Certain types of queries are allowed
 - Subset query
 - Statistical information of subset
- Example:

- Query with the curator
- Certain types of queries are allowed
 - Subset query
 - Statistical information of subset
- Example:
 - A. Numerical data: statistical mean, variance etc.
 - B. Categorical data: counting number, histogram etc.

- Query with the curator
- Certain types of queries are allowed
 - Subset quer
 - Statistical information of subset
- Example:
 - A. Numerical data: statistical mean, variance etc.
 - B. Categorical data: counting number, histogram etc.

Users	Blood
1	A
2	A
3	В
4	AB
5	0
6	0

Users	Blood
1	A
2	A
3	В
4	AB
5	Ο
6	0

Users	Blood
1	A
2	A
3	В
4	AB
5	0
6	0

Users	Blood
1	A
2	A
3	В
4	AB
5	Ο
6	0

Users	Blood
1	A
2	A
3	В
4	AB
5	0
6	0

Users	Blood
1	A
2	A
3	В
4	AB
5	0
6	0

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	0

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	O

• Histogram Query

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	0

- Histogram Query
- Noisy response: ex. to guarantee stronger privacy

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	O

- Histogram Query
- Noisy response: ex. to guarantee stronger privacy

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	O

- Histogram Query
- Noisy response: ex. to guarantee stronger privacy

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	0

- Histogram Query
- Noisy response: ex. to guarantee stronger privacy

Users	Blood
1	A
2	A
3	В
•	•
•	•
n	0

- Histogram Query
- Noisy response: ex. to guarantee stronger privacy
- The added noise is at most δ_n

Users	Blood
1	A
2	A
3	В
•	•
n	O

• Goal: to extract the data set partially

^[1] I.-H. Wang, et. al "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," Proceedings of IEEE International Symposium on Information Theory 2016

^[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," Proceedings of IEEE International Symposium on Information Theory 2017

- Goal: to extract the data set partially
 - motivation: privacy, cost of data extraction, etc.

^[1] I.-H. Wang, et. al "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," Proceedings of IEEE International Symposium on Information Theory 2016

^[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," Proceedings of IEEE International Symposium on Information Theory 2017

- Goal: to extract the data set partially
 - motivation: privacy, cost of data extraction, etc.
- Key question: how many queries does the analyst required?

^[1] I.-H. Wang, et. al "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," Proceedings of IEEE International Symposium on Information Theory 2016

^[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," Proceedings of IEEE International Symposium on Information Theory 2017

- Goal: to extract the data set partially
 - motivation: privacy, cost of data extraction, etc.
- Key question: how many queries does the analyst required?
- Query complexity: minimum number of queries to reconstruct the data set

^[1] I.-H. Wang, et. al "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," Proceedings of IEEE International Symposium on Information Theory 2016

^[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," Proceedings of IEEE International Symposium on Information Theory 2017

- Goal: to extract the data set partially
 - motivation: privacy, cost of data extraction, etc.
- Key question: how many queries does the analyst required?
- · Query complexity: minimum number of queries to reconstruct the data set
- In noiseless case, i.e. $\delta_n=0$, the query complexity in [1] is proven to be $\Theta\left(\frac{n}{\log n}\right)$ Also, in [2], an AMP algorithm is proposed to decode the data set

Wei-Ning Chen

^[1] I.-H. Wang, et. al "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," Proceedings of IEEE International Symposium on Information Theory 2016

^[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," Proceedings of IEEE International Symposium on Information Theory 2017

Partial Data Reconstruction

• x: original data set

 \hat{x} : recovered data set

• k_n -distortion : $d_{\text{Hamming}}(\mathbf{x}, \mathbf{\hat{x}}) \leq k_n$

Main Result

$$\left| \delta_n = \Theta\left(n^d\right), k_n = \Theta\left(n^\kappa\right) \right|$$

Main Result

query complexity: non-polynomial

Main Result

The rest of the talk...

- Problem Formulation
 - Data extraction as a linear inverse problem
- Sketch of Proof:
 - A. Regime 1: Impossibility of Poly-n Query
 - B. Regime 2: The Fundamental Limit of Query Complexity
- Summary

Histogram Query as Linear Multiplication

Users	Blood
1	0
2	В
3	В
•	•
•	•
n	A

$$n \left\{ \begin{array}{ccccc} \mathbf{A}, \ \mathbf{B}, \ \mathbf{AB}, \ \mathbf{O} \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 \end{array} \right]$$

$$\mathbf{X}$$

$$\mathbf{User}\{1,2,n\}$$

$$\mathbf{q}_{i}^{\mathsf{T}} = \underbrace{\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 1 \end{bmatrix}}_{n}$$

$$n \left\{ \begin{array}{cccc} \textbf{A, B, AB, O} \\ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 \end{array} \right] & \textbf{y}_i = \textbf{q}_i^\intercal \textbf{X} + \Delta_i \\ \textbf{X} & & & & & & & & & \\ \end{array} \right.$$

Data set

Curator

Data Analyst

Decode column by column

Data set

Curator

Data Analyst

Decode column by column

 $y_i: \# \text{ of } 1 \text{ in } \mathbf{x}$

Data set

 \mathbf{X}

Curator

$$\mathbf{Q} = egin{bmatrix} oldsymbol{q}_1^{\intercal} \ oldsymbol{q}_2^{\intercal} \ oldsymbol{dagger} \ oldsymbol{q}_{T_n}^{\intercal} \end{bmatrix}$$

11

Data Analyst

$$oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_{T_n} \end{bmatrix} + egin{bmatrix} \Delta_1 \ \Delta_2 \ dots \ \Delta_{T_n} \end{bmatrix}$$

• Equivalent linear inverse problem :

- Equivalent linear inverse problem:
 - riangleright Given an output $y=\mathbf{Q}\mathbf{x}+oldsymbol{\Delta}$
 - lacktriangleright Find the corresponding data set $\hat{\mathbf{x}}: \|\mathbf{Q}\hat{\mathbf{x}}-y\|_{\infty} \leq \delta_n$ and $d_{\mathrm{Hamming}}(\mathbf{x},\hat{\mathbf{x}}) \leq k_n$

- Equivalent linear inverse problem:
 - riangleright Given an output $y=\mathbf{Q}\mathbf{x}+oldsymbol{\Delta}$
 - lacktriangleright Find the corresponding data set $\hat{\mathbf{x}}: \|\mathbf{Q}\hat{\mathbf{x}}-m{y}\|_{\infty} \leq \delta_n$ and $d_{\mathrm{Hamming}}(\mathbf{x},\hat{\mathbf{x}}) \leq k_n$
- The noise level is δ_n , if the difference in each single query is at most δ_n

- Equivalent linear inverse problem:
 - riangleright Given an output $y=\mathbf{Q}\mathbf{x}+oldsymbol{\Delta}$
 - lacktriangleright Find the corresponding data set $\hat{\mathbf{x}}: \|\mathbf{Q}\hat{\mathbf{x}}-\mathbf{y}\|_{\infty} \leq \delta_n$ and $d_{\mathrm{Hamming}}(\mathbf{x},\hat{\mathbf{x}}) \leq k_n$
- The noise level is δ_n , if the difference in each single query is at most $\delta_n \Longleftrightarrow \|\Delta\|_{\infty} \leq \delta_n (\Longleftrightarrow \forall i, \Delta_i \leq \delta_n)$

- Equivalent linear inverse problem :
 - riangleright Given an output $y=\mathbf{Q}\mathbf{x}+oldsymbol{\Delta}$
 - lacktriangleright Find the corresponding data set $\hat{\mathbf{x}}: \|\mathbf{Q}\hat{\mathbf{x}}-\mathbf{y}\|_{\infty} \leq \delta_n$, and $d_{\mathrm{Hamming}}(\mathbf{x},\hat{\mathbf{x}}) \leq k_n$
- The noise level is δ_n , if the difference in each single query is at most $\delta_n \Longleftrightarrow \|\Delta\|_{\infty} \leq \delta_n (\Longleftrightarrow \forall i, \Delta_i \leq \delta_n)$
- Query complexity $T_n^*(k_n,\delta_n)$: minimum number of queries required to extract data set within distortion k_n , under noise level δ_n

Main Result

$$\left|\delta_{n}=\Theta\left(n^{d}\right),\,k_{n}=\Theta\left(n^{\kappa}\right)\right|$$

Main Result

Wei-Ning Chen

Main Result

Introduction 13 Wei-Ning Chen

Regime 1: Impossibility of Polynomial Query Complexity

• Regime 1: $d > (\frac{1}{2} + \epsilon)\kappa$, for any $\epsilon > 0$ (the noise is too large)

Regime 1 Wei-Ning Chen

 Proof idea: without sufficient number of queries, there exists more than one possible data set which are consistent with the response.

Impossibility 15 Wei-Ning Chen

$$S_{k_n} \triangleq \{ (\mathbf{x}, \tilde{\mathbf{x}}) \mid \mathbf{x}, \tilde{\mathbf{x}} \in \{0, 1\}^n, \|\mathbf{x} - \tilde{\mathbf{x}}\|_1 = k_n, \|\mathbf{x}\|_1 = \|\tilde{\mathbf{x}}\|_1 \}$$

 \mathbf{X}

 \mathbf{X}

$$V_i \triangleq \{(\mathbf{x}, \tilde{\mathbf{x}}) \in S_{k_n} \mid |\mathbf{q}_i \cdot (\mathbf{x} - \tilde{\mathbf{x}})| > \delta_n \}.$$

Wei-Ning Chen

at least $\frac{|S_{k_n}|}{\max_i |V_i|}$ queries are required

• Therefore, we have the following lower bound on $T_n^*(k_n,\delta_n)$:

$$T_n^*(k_n, \delta_n) \ge \frac{|S_{k_n}|}{\max_{i \in \{1, \dots, T_n\}} |V_i|}$$

Impossibility of Polynomial Query

ullet Therefore, we have the following lower bound on $T_n^*(k_n,\delta_n)$:

$$T_n^*(k_n,\delta_n) \geq \frac{|S_{k_n}|}{\max_{i\in\{1,\dots,T_n\}}|V_i|}$$
 solve the optimization over V, and apply Chernoff ineq.
$$\geq C\exp\left(\frac{\delta_n^2}{k_n}\right) = C\exp\left(n^{2d-\kappa}\right)$$

Impossibility 17 Wei-Ning Chen

Regime 2: Achievability and Converse

• Regime 2: $d < \frac{1}{2}\kappa$ (the noise is small enough)

• Random sampling is considered

- Random sampling is considered
- ullet Evert item is included to the queried subset with probability 1/2

Achievability Wei-Ning Chen

- Random sampling is considered
- ullet Evert item is included to the queried subset with probability 1/2

$$\iff (\mathbf{Q})_{i,j} \sim \mathrm{Ber}\left(\frac{1}{2}\right)$$

- Random sampling is considered
- ullet Evert item is included to the queried subset with probability 1/2

$$\iff (\mathbf{Q})_{i,j} \sim \mathrm{Ber}\left(\frac{1}{2}\right)$$

• The probability of failure:

$$P_f(\mathbf{x}; k_n, \delta_n) \triangleq$$

 $P \{ \exists \text{ a confused } \tilde{\mathbf{x}} \text{ which is consistent with the query output} \}$

- Random sampling is considered
- ullet Evert item is included to the queried subset with probability 1/2

$$\iff (\mathbf{Q})_{i,j} \sim \mathrm{Ber}\left(\frac{1}{2}\right)$$

• The probability of failure:

$$P_f(\mathbf{x}; k_n, \delta_n) \triangleq$$

 $P \{ \exists \text{ a confused } \tilde{\mathbf{x}} \text{ which is consistent with the query output} \}$

• If number of queries is $\Omega(n/\log n)$ then $P_f(\mathbf{x};k_n,\delta_n) \to 0$ as $n \to \infty$

- Random sampling is considered
- ullet Evert item is included to the queried subset with probability 1/2

$$\iff (\mathbf{Q})_{i,j} \sim \mathrm{Ber}\left(\frac{1}{2}\right)$$

• The probability of failure:

$$P_f(\mathbf{x}; k_n, \delta_n) \triangleq$$

 $P \{ \exists \text{ a confused } \tilde{\mathbf{x}} \text{ which is consistent with the query output} \}$

- If number of queries is $\Omega(n/\log n)$ then $P_f(\mathbf{x};k_n,\delta_n) \to 0$ as $n \to \infty$
 - Applying Chernoff bound on failure event

Converse Lower Bound

• Necessary condition:

$$\forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathcal{X}, \|\mathbf{x} - \tilde{\mathbf{x}}\|_1 > k_n \implies \|\mathbf{Q}\mathbf{x} - \mathbf{Q}\tilde{\mathbf{x}}\|_{\infty} > 2\delta_n$$

• Packing inequality:

$$2\delta_n$$
-packing number on $\mathcal{Y} \geq \frac{1}{2}k_n$ -packing number on \mathcal{X}

Converse Lower Bound

• Necessary condition:

$$\forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathcal{X}, \|\mathbf{x} - \tilde{\mathbf{x}}\|_1 > k_n \implies \|\mathbf{Q}\mathbf{x} - \mathbf{Q}\tilde{\mathbf{x}}\|_{\infty} > 2\delta_n$$

• Packing inequality:

 $2\delta_n$ -packing number on $\mathcal{Y} \geq \frac{1}{2}k_n$ -packing number on \mathcal{X}

Summary

Reference

[1] I.-H. Wang, S.-L. Huang et. al. "Data extraction via histogram and arithmetic mean queries: Fundamental limits and algorithms," *Proceedings of IEEE International Symposium on Information Theory*, July 2016.

[2] Ahmed El Alaoui, et. al "Decoding from Pooled Data: Phase Transitions of Message Passing," *Proceedings of IEEE International Symposium on Information Theory*, June 2017

[3] C. Dwork, A. Roth, "The algorithmic foundations of differential privacy," Theoretical Computer Science, 2013

Converse 22 Wei-Ning Chen

Question?

Thank you for your attention!