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Abstract—The problem of extracting categorical data via noisy
histogram queries is investigated. The considered data set is a
collection of n items, each of which carries a piece of categorical
data taking values in a finite alphabet. Data analysts are allowed
to query the data set through a curator by specifying a subset
of items and then obtaining the histogram of the queried subset.
The (unnormalized) histogram released by the curator, however,
is perturbed by some additive noise with maximum magnitude δn.
The goal of the data analyst is to reconstruct the categorical data
set such that the Hamming distance between the reconstructed
and the actual one is smaller than a tolerance parameter kn. In
this work, we explore the fundamental limit on the minimum
number of queries T ∗

n required for the analyst to reconstruct
the n-item data set within kn tolerance subject to δn noisy
perturbation. We first show that if δn = O(

√
kn), the minimum

query complexity T ∗
n = Θ(n/ logn), where the achievability is

based on random sampling, and the converse is based on counting
and packing arguments. On the other hand, if δn = Ω(k

(1+ε)/2
n )

for some ε > 0, we prove that T ∗
n = ω(np) for any positive

integer p. In other words, no querying methods with polynomial-
in-n query complexity can successfully reconstruct the data set
in that regime. This impossibility result is established by a novel
combinatorial lower bound on T ∗

n .

I. INTRODUCTION

Extracting information from large-scale data sets plays a
crucial role in many fields including data mining, machine
learning, bioinformatics, etc.. Typically, data extraction con-
sists of two steps: first the data analyst sends queries to the
curator who is in charge of data release, and then the data
curator responds with the corresponding answers. In many
circumstances the data curator only allows certain types of
queries whose outcomes do not depend on individual items,
due to privacy considerations or computational efficiency
limitations. For categorical data, a typical kind of query is
histogram query, where each query is a subset of items, and
the response is the histogram (the number of items belonging
to each category) of the corresponding items. In addition
to constraining the type of queries, the curator may further
perturb the response to provide stronger privacy guarantees.
For example, in [1], histogram query (or called counting query
for binary category) is studied and analyzed as a privacy-
preserving database model. Therefore, in this paper we focus
on noisy responses to histogram queries.

Characterizing the fundamental limit on the number of
queries (termed query complexity) required to extract the data
set is important to both data analysts and data curators. In [2],

the fundamental limit on the minimum query complexity to
precisely extract the entire n-item data set with noiseless his-
togram queries is characterized. The optimal query complexity
was shown to be Θ(n/ log n), where n is the size of the data
set. Moreover, an explicit construction of the querying method
achieving the optimal query complexity is proposed. However,
for the general setting where the goal is to partially extract
the data set with noisy query responses, the characterization
of the optimal query complexity remains open.

In this paper, we investigate the optimal query complexity
T ∗n for partial data extraction with noisy responses to his-
togram queries. The response from the curator is the actual un-
normalized histogram of the queried subset of items, perturbed
by an additive noise with maximum magnitude δn. The goal
of the analyst is to reconstruct the data set partially so that the
Hamming distance between the reconstructed and the actual
data set is at most kn. Our main contribution is characterizing
the asymptotic behavior of T ∗n with respect to the size of the
data set n and the two parameters kn, δn coupled with n:

1) In the regime δn = O(
√
kn), T ∗n = Θ(n/ log n), which

is the same as the optimal query complexity for perfect
reconstruction with noiseless responses to queries [2].

2) In the regime δn = Ω(k
(1+ε)/2
n ) for some ε > 0, T ∗n =

ω(np) for any positive integer p. In words, there does not
exist querying methods with Poly(n) query complexity.

For proving the achievability part (upper bound on T ∗n ),
randomized querying is employed. In each query, the items to
be included in the queried subset are randomly and uniformly
selected. An upper bound on the probability of failure to
distinguish two different data sets is then proved, showing that
if δn = O(

√
kn), Ω(n/ log n) such queries ensure vanishing

probability of failure. For proving the converse part (lower
bound on T ∗n ), we first show that T ∗n = Ω(n/ log n) based
on a packing argument, extending the proof in [2] to general
δn, kn. We then develop a novel combinatorial lower bound
on T ∗n and show that if δn = Ω(k

(1+ε)/2
n ) for some ε > 0 then

no method with polynomial query complexity can reconstruct
the data set within Hamming distance of kn.

Related Works: Prior work on categorical data extraction with
histogram queries for generic alphabet A was initiated in [2],
where the optimal query complexity of exact reconstruction
is shown to be Θ(n/ log n) with noiseless responses, and
improved to Θ( k

log k log n
k ) when the data set is sparse with



sparsity level k [3]. Furthermore in [4], upper and lower
bounds on the pre-constants in the n/ log n scaling are also
proved. However, none of the previous works investigated the
setting with noisy responses to queries and partial reconstruc-
tion. Our problem can also be viewed as generalization of
group testing. See Section VI. of [2] for the connection.

Our work is closely related to studies of lower bounds in
data privacy, where the focus is on deriving conditions on the
perturbation level in the response so that no computationally-
efficient algorithms can reconstruct the private data set from
aggregated queries. Binary alphabet (A = {0, 1}) is mainly
considered in these works. In [1], noisy response to histogram
query is proven to be differential private with proper pertur-
bation. In [5], it is shown that no algorithm with polynomial
running time can reconstruct a constant fraction of the entire
data set when the perturbation level δn = Ω(

√
n). Besides,

when δn = o(
√
n), a polynomial-running-time algorithm is

given, where the query complexity is ω(n). In [6], query
complexity and running time are improved to n and Θ(n log n)
respectively. However, all the reconstruction algorithms [5]–
[8] aim to recover only a constant fraction of the entire data set
(kn = Θ(n)) with perturbation δn ≈

√
n, and can be viewed

as special cases in the regimes considered in this work.

Notations: [N1 : N2] , {N1, N1 + 1, ..., N2} for integers
N1 ≤ N2, and [N ] , {1, 2, ..., N}, for N ∈ N. Let (·)ᵀ denote
the matrix transpose and 1{·} denote the indicator function.

II. PROBLEM FORMULATION

Following [2], we cast the data extraction problem with n
items and Tn queries as a linear inverse problem.

A. Data Set, Queries, and Responses

Consider a data set with n items, labeled from 1 to n. Each
item possesses a piece of data which takes value in a finite
alphabet A = {a1, a2, ..., ad} and |A| = d. We first consider
the case d = 2, and assume without loss of generality A =
{0, 1}. Later in Section VI, it is explained how to extend the
results to general d. Let us denote the data set as x ∈ X ,
where X denotes the collection of all possible realization of
data sets. For now, X = {0, 1}n×1.

To address the partial reconstruction criterion, we use the
Hamming distance, formally stated below.

Definition 2.1 (Distance between two data sets): Let x, x̃ ∈
X be two data sets with items [x1 ... xn]ᵀ and [x̃1 ... x̃n]ᵀ

respectively. Then, ddata(x, x̃) ,
∑n
j=1 1{xj 6= x̃j}.

Consider Tn queries, each query being a subset of labels in
[n]. Let Si denote the queried subset in the i-th query. The
response to a query is the histogram of the queried subset.
We shall use a Tn × n query matrix Q ∈ {0, 1}Tn×n to
collectively represent the Tn queries. In particular, (Q)i,j = 1
if and only if the j-th item is included in the i-th queried
subset. In other words, (Q)i,j = 1{j ∈ Si}. Hence, the i-th
row qᵀ

i ∈ {0, 1}1×n represents the queried subset in the i-th
query. The responses to the queries can then be represented
as the multiplication of the query matrix and the data-set
matrix (here, it is an n × 1 matrix). It is not hard to see

that the unnormallized response to the i-th histogram query
yi = qᵀ

i x ∈ [n] and hence y = Qx ∈ {0, 1, ..., n}Tn×1.
To address the perturbation in the responses, we use the `∞

norm, formally stated below.
Definition 2.2 (Distance between two response): Suppose

y, ỹ are the responses to two queries. The distance between
them is defined as dresponse(y, ỹ) , maxi |yi − ỹi|.

B. Criteria of Data Extraction

Definition 2.3 (Tolerance in Partial Extraction): The data
extraction task is k-tolerable, if the reconstructed data set x̃
differs from the original one x by at most k, that is,

ddata(x, x̃) ≤ k, ∀x ∈ X .

Definition 2.4 (Noise Level in Perturbed Response): Re-
sponses to queries is of noise level δ if the perturbed response
ỹ has distance at most δ to original y, that is,

dresponse(y, ỹ) ≤ δ.

The goal of the data analyst is to design the query matrix
Q to extract the data set x within distance kn from the δn
perturbed response ỹ. Formally, Q has to satisfy the following:

∀x, x̃ ∈ X , ddata(x, x̃) > kn

=⇒ dresponse(Qx,Qx̃) > 2δn. (1)

Definition 2.5 (Recoverability): Suppose a query matrix Q ∈
{0, 1}Tn×n satisfies (1) with respect to tolerance kn and noise
level δn, then it is called (Tn, kn, δn)-recoverable.

Definition 2.6 (Optimal Query Complexity): T ∗n(kn, δn)
denotes the minimum query complexity for reconstructing a
n-item data set with tolerance kn under noise level δn, that is,
• There exists a Q which is (T ∗n , kn, δn)-recoverable.
• For all Tn < T ∗n , there does not exist query matrix Q

which is (Tn, kn, δn)-recoverable.
For a randomized querying method, the query matrix Q is

randomly selected from distribution PQ. To specify the crite-
rion of successfully extracting the data set under randomized
querying, let us define the probability of failure as follows:

Definition 2.7 (Probability of Failure): For a data set x ∈
X , the probability of failure Pf (x; kn, δn) with respect to the
randomly generated query matrix Q is defined as

PQ {∃ x̃, ddata(x̃,x) > kn, dresponse(Qx̃, Qx) ≤ 2δn}

Definition 2.8 ((Tn, kn, δn)-achievable): Given a sequence
of randomly generated query matrices {Q(Tn,n) | n ∈ N}, we
say it is (Tn, kn, δn)-achievable, if

lim
n→∞

max
x∈X

Pf (x; kn, δn) = 0 (2)

III. MAIN RESULTS

A. Achievability

Theorem 3.1: (Achievability of Randomized Querying)
Suppose one generates the query matrix Q

(Tn,n)
i,j according to

the following distribution:(
Q(Tn,n)

)
i,j

i.i.d.∼ Ber
(
1
2

)
. (3)



Then, the extraction criterion (2) will be satisfied as long as
Tn = Ω( n

logn ) and one of the following conditions holds:
1) kn = O(nε), for some ε < 1 and δn = O(

√
kn)

2) ∀ ε < 1, kn = ω(nε) and δn = O(kn
1−ε′

2 ) for some ε′ > 0.
Proof. The proof involves finding upper bounds on the

probability of failure. Details can be found in Section IV.

B. Lower Bounds on Query Complexity

For the converse part, we give two lower bounds in the
following two theorems.

Theorem 3.2: (Packing Lower Bound) Let kn ≤
(
1−ε
2

)
n

for some ε > 0. Then, the following lower bound holds:

T ∗n(kn, δn) = Ω

(
n
(
1−Hb

(
1−ε
2

))
log(n+ 1)− log(4δn + 1)

)
(4)

Specifically, when δn = O(n
1−ε′

2 ), and ε, ε′ does not depend
on n, then (4) can be further simplified to

T ∗n(kn, δn) = Ω (n/ log n) .

Proof. The successful extraction criterion holds only if for
any two data sets x, x̃ with distance greater than kn, the
queried output Qx,Qx̃ differ to each other more than 2δn,
say, dresponse(Qx,Qx̃) > 2δn. Therefore, we cast the problem
into a packing problem. The detailed proof is omitted here and
can be found in Appendix A of [9]

Remark 3.1: The condition kn ≤
(
1−ε
2

)
n for some ε >

0 is reasonable. Let kn = n/2 and consider the following
scenario: we simply make a query with qi = [1, ..., 1]ᵀ, and
if qᵀ

i x > n/2, we reconstruct x as x̃ = [1, ..., 1]ᵀ, else we
say x̃ = [0, ..., 0]ᵀ. The reconstruction will succeed with high
probability as n grows large enough, by making one query.

The above lower bound is used when the noise level δn
is relatively small with respect to kn. Next, we give another
lower bound which depends on both kn and δn:

Theorem 3.3: (Combinatorial Lower Bound)

T ∗n(kn, δn) ≥

(
n
n/2

)
2
kn/2∑
α=2δn

(
kn/2
α

) α∑
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ
) . (5)

This bound is used to prove the impossibility result when
δn is large with respect to kn. Detailed proof is given in
Section V.

C. Fundamental Limit

First, Theorem 3.1 gives us a sufficient condition for recov-
ering the data set by Ω(n/ log n) queries. On the other hand,
Theorem 3.2 states that Tn = Ω(n/ log n) is also necessary for
reconstruction. We combine them into the following corollary:

Corollary 3.1: (Fundamental Limit of Query Complexity)
Under the one of the following two noise-tolerance conditions
• kn = O (nε) for some ε < 1, and δn = O(

√
kn), or

• ∀ ε < 1, kn = ω (nε), and ∃ ε′ > 0, δn = O(k
(1−ε′)/2
n ),

the optimal query complexity is

T ∗n(kn, δn) = Θ( n
logn ).

Next, following Theorem 3.3, we give an impossibility
result below:

Theorem 3.4: (Impossibility of Poly(n)Query Complexity)
If both the following conditions are satisfied:
• 1

2n ≥ kn ≥ C1n
ε1

• δn = Ω(k
1+ε2

2
n )

where ε1, ε2 ∈ (0, 1), and C1 > 0, then T ∗n(kn, δn) is ω(np),
for all p ∈ N. In words, there does not exist querying methods
with Poly(n) query complexity that can do the job.

Again, the assumption 1
2n > kn is reasonable due to

Remark 3.1. To prove this result, we utilize Chernoff bound
to derive a lower bound on T ∗n(kn, δn), and see that it grows
exponentially fast with n if δn is great enough. The details
can be found in Appendix B of [9].

Remark 3.2: Corollary 3.1 and Theorem 3.4 establish a
sharp boundary δn ≈

√
kn of partial data extraction under

noisy responses to histogram queries. Roughly speaking, if
δn �

√
kn, then the sufficient and necessary condition to

recover data set is T ∗n = Θ(n/ log n). On the other hand, if
δn �

√
kn, there is no querying method with Poly(n) query

complexity can reconstruct data set successfully.

IV. ACHIEVABILITY VIA RANDOMIZED QUERYING

In this section, we give the proof of Theorem 3.1. The proof
involves upper bounding the probability of failure. Due to the
randomized construction of the querying matrix, each entry
is generated in an i.i.d. fashion. Therefore, we first cast the
probability of failure into the central probability of binomial
distribution, and then further upper bound it.

Claim 4.1: Under the randomized query defined in (3), the
probability of failure can be upper bounded by

Pf (x; kn, δn)

≤
n∑

t=kn

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn , (6)

where Bt ∼ Binomial(t, 1/2).
The proof of the above claim is given in Appendix C in [9].
Continuing the proof of Theorem 3.1, the key is to separate

the summation of (6) into two parts:
k∗∑
t=kn

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

︸ ︷︷ ︸
(i)

+

n∑
t=k∗

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

︸ ︷︷ ︸
(ii)

. (7)

Before continuing bounding the probability of failure, we give
a lemma to upper bound the central probability of binomial
distribution:

Lemma 4.1: Let Bt
iid∼ Binomial(t, 1/2), δn ∈ (0, t/16)

then the following two upper bounds hold:
1) P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 4δn+1√

πt
.

This bound is used when δn is small (with respect to t).



2) P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 1− 2
15e
−64δ2n/t.

This bound is used when δn is large (with respect to t).
The proof can be found in Appendix D in [9].

Now, we are ready for upper bounding (7).
For part (i) in (7), applying the second bound in Lemma 4.1,

we have
k∗∑
t=kn

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

≤
k∗∑
t=1

(
n

t

)
P (kn/2− 2δn ≤ Bkn ≤ kn/2 + 2δn)

Tn

≤
k∗∑
t=1

(
n

t

)(
1− 2

15
exp

(
−64δ2n

kn

))m
≤
(

1− 2

15
exp

(
−64δ2n

kn

))Tn
(n+ 1)k

∗
(8)

Due to our assumption that δn = O(
√
kn), 64δ2n/kn is upper

bounded by some constant η ≥ 0 for sufficiently large n, and
hence(

1− 2

15
exp

(
−64δ2n

kn

))
≤
(

1− 2

15
exp (η)

)
=: ξ,

for sufficient large n. Note that ξ is a constant which does not
depend on n, and is strictly less than 1.

Hence (8) can be further bounded by ξTn(n+ 1)k
∗
. To get

vanishing probability of failure, Tn must satisfy

Tn = Ω

(
k∗ log n

log ξ

)
= Ω (k∗ log n) , (9)

since ξ does not depend on n.
For part (ii) in (7), we have

n∑
t=k∗

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn

≤
n∑
t=0

(
n

t

)
P (k∗/2− 2δn ≤ Bk∗ ≤ k∗/2 + 2δn)

Tn

≤
(

4δn + 1√
πk∗

)Tn
2n+1, (10)

where (10) is due to Lemma 4.1.
To obtain vanishing failure probability,

Tn = Ω

(
n+ 1

1
2 log(πk∗)− log(4δn + 1)

)
. (11)

Notice that (11) requires
√
πk∗ > 4δn + 1.

In order to choose a proper k∗ according to (9) and (11),
we distinguish kn into two regimes:
1) kn = O (nε), for some ε ∈ (0, 1):

In this regime, kn = O (nε) and δn = O
(
nε/2

)
. Hence one

can choose k∗ such that k∗ = Θ
(
nε+ε

′
)
, where ε+ε′ < 1.

In this case,

(9) =⇒ Tn = Ω
(
nε+ε

′
log n

)

(11) =⇒ Tn = Ω

(
n

(ε+ ε′) log n/2− log δn

)
2) kn = ω (nε), for all ε < 1:

In this regime, δn = O
(
k
(1−ε′)/2
n

)
, and therefore we can

choose k∗ such that k∗ = Θ
(
n1−ε

′
)
. In this case,

(9) =⇒ Tn = Ω
(
n1−ε

′
log n

)
(11) =⇒ Tn = Ω

(
n

(1− ε′) log n/2− log δn

)
.

The proof is complete by noticing that Tn = Ω
(

n
logn

)
is

sufficient for the cases in the two regimes.

V. PROOF OF THE COMBINATORIAL LOWER BOUND

In this section, we give the proof of combinatorial lower
bound stated in Theorem 3.3.

For notational convenience, let us define the right-hand side
of (5) as τ . Then, the theorem is equivalent to the following
statement:

For any Tn ≤ τ , ∃x, x̃ ∈ {0, 1}n, ‖x− x̃‖ > kn,
such that |Qx−Qx̃| ≤ 2δn.

The main idea of the proof is as follows. Consider a subset S
of all confused pairs (x, x̃) differing by at least kn elements.
After each query qi, one can remove some candidates in S
according to the response. If for every single query, the number
of removed candidates is at most N , then at least |S|N queries
are needed. We will show that τ ≤ |S|N . Therefore once Tn ≤
τ , there exists at least one ambiguous data x̃, and hence the
reconstruction is impossible. Moreover, τ is a lower bound of
T ∗n(kn, δn).

For a data set x ∈ {0, 1}n, denote an ambiguous data set as
x̃. We focus on the collection of all possible pairs of (x, x̃)
which have the same one norm, and differs from each other
exactly kn’s element, that is,

‖x− x̃‖1 = kn, and ‖x‖1 = ‖x̃‖1.

Let x, x̃ ∈ {0, 1}n, and define

Skn , {(x, x̃) | ‖x− x̃‖1 = kn, ‖x‖1 = ‖x̃‖1}

=

{
(x, x̃) | π(1|x− x̃) = π(−1|x− x̃) =

kn
2

}
,

where we use π(· | w) to denote the unnormalized histogram
of vector w, say, π(x | w) , (number of x in w) . Define the
collection of all confusion datasets after the i-th query :

Vi , { (x, x̃) ∈ Skn | |qi · (x− x̃)| ≤ 2δn } .

As long as

Tn <
|Skn |

maxi∈{1,...,Tn} |V ci |
, (12)

(with a slight abuse of notation, let V ci = V ci ∩Skn ), we have

|Skn | > Tn max
i∈{1,...,Tn}

|V ci | ≥
Tn∑
i=1

|V ci | ≥

∣∣∣∣∣
Tn⋃
i=1

V ci

∣∣∣∣∣



due to union bound. Notice that

|
Tn⋃
i=1

V ci | < |Skn | ⇐⇒
Tn⋃
i=1

V ci 6= Skn ⇐⇒
Tn⋂
i=1

Vi 6= ∅,

which implies that there exists at least one pair of confusion
data sets (x, x̃) ∈ Skn after Tn independent queries. To
complete the proof, all we need is to the following claim:

Claim 5.1:

τ ≤ |Skn |
maxi∈{1,...,Tn} |V ci |

.

Proof. First, we introduce

T1 , {j |x̃j = 0, xj = 1}, T2 , {j |x̃j = 1, xj = 0}.

Note that suppose (x, x̃) ∈ Skn , then |T1| = |T2| = kn/2 due
to the fact ‖x‖1 = ‖x̃‖1, and ‖x− x̃‖1 = kn. Then obviously
we have

|Skn | =
(

n

kn/2

)(
n− kn/2
kn/2

)
2n−kn . (13)

Let the queried subset corresponding to q be S. The
confusion events {|qx− qx̃| ≤ 2δn} happen if and only if∣∣|S ∩ T1| − |S ∩ T2|∣∣ ≤ 2δn. (14)

Therefore, to upper bound |V ci |, we have

max
i
|V ci | ≤ max

q
| { (x, x̃) ∈ Skn | |q · (x− x̃)| > 2δn } |

= max
S⊂[n]

∣∣ {(x, x̃) ∈ Skn
∣∣||S ∩ T1| − |S ∩ T2|| > 2δn

} ∣∣
(15)

By symmetry, it is intuitive that the maximum is attained
when |S| = n

2 (we also give a rigorous proof in Appendix,
see Lemma D.1), and thus (15) is equal to∣∣ {(x, x̃) ∈ Skn |||S ∩ T1| − |S ∩ T2|| > 2δn}

=

∣∣∣∣∣ ⋃
δ>2δn

{(x, x̃) ∈ Skn | ||S ∩ T1| − |S ∩ T2|| = δ}

∣∣∣∣∣
=2n−kn+1

kn/2∑
α=0

α∑
δ=2δn

(
n/2

α

)(
n/2

kn/2− α

)
×(

n/2− α
α− δ

)(
n/2− kn/2 + α

kn/2 + δ − α

)
(16)

Combining (13) and (16), we obtain

|Skn |
maxi∈{1,...,Tn} |V ci |

≥

(
n

kn/2

)(
n−kn/2
kn/2

)
2
∑kn/2
α=0

∑α
δ=2δn

(
n/2
α

)(
n/2−kn/2
kn/2−α

)(
n/2−α
α−δ

)(
n/2−kn/2+α
kn/2+δ−α

)
=

(
n
n
2

)
2
∑kn/2
α=2δn

(
kn/2
α

)∑α
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ
) = τ, (17)

where (17) is due to direct calculation of binomial coefficient.
This proves our claim.

VI. EXTENSION

We close this paper by briefly explaining how to extend our
results to the general case |A| = d. Following the formulation
in [2], the data set can be modeled by a matrix X ∈
{0, 1}n×d, and the response Y ∈ {0, 1, ..., n}Tn×d. To prove
the achievability part, we notice that the probability of error
Pf (X; kn, δn) (w.r.t Q) is upper bounded by Pf (x; kn, δn);
here we abuse the notation, denoting x ∈ {0, 1}n for some
column of X. Hence, Theorem 3.1 also holds for d being
constant with respect to n.

On the other hand, suppose X and X̃ are two data sets
with Hamming distance greater than kn. Then, there exists
some column of X, X̃, say, x, x̃, such that ddata(x, x̃) ≥ kn/d.
Therefore, the converse results in Therem 3.2, 3.3, and 3.4 hold
for k′n =

(
kn
d

)
. In particular, as long as d is a constant with

respect to n, the asymptotic behavior remains the same.
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APPENDIX A
PROOF OF THEOREM 3.2

Theorem 3.2: (Packing Lower Bound) Let kn ≤
(
1−ε
2

)
n for some ε > 0. Then, the following lower bound holds:

T ∗n(kn, δn) = Ω

(
n
(
1−Hb

(
1−ε
2

))
log(n+ 1)− log(4δn + 1)

)
(4)

Specifically, when δn = O(n
1−ε′

2 ), and ε, ε′ does not depend on n, then (4) can be further simplified to

T ∗n(kn, δn) = Ω (n/ log n) .

We prove Theorem 3.2 by packing argument.
Proof. (proof of Theorem 3.2)
To reconstruct x successfully, the cardinality of possible input must less than the cardinality of possible output. The number
of possible input (output) turns out to be a packing problem. First, we notice the number of x̃ with distance to x less than kn
is

|{x̃ ∈ {0, 1}n | ‖x̃− x‖1 ≤ kn}| =
kn∑
i=1

(
n

i

)
,

thus the total number of all possible pairs (x, x̃) with distance greater than kn to each other is

|{xi ∈ {0, 1}n | |xi − xj | > kn,∀xi 6= xj}| =
2n∑kn
i=1

(
n
i

) .
On the other hand, the total number of possible outcomes is∣∣{0, 1, ..., n}Tn∣∣

(4δn + 1)Tn
=

(
n+ 1

4δn + 1

)Tn
To guarantee successful reconstruction, the number of possible outputs must greater than the number of possible input, hence
we have

2n∑kn
i=1

(
n
i

) ≤ ( n+ 1

4δn + 1

)Tn
(18)

Now, we give a bound on summation of binomial coefficient: Suppose k = pn, where p ∈ (0, 1) does not depend on n. Then
by Stirling approximation, we have

log

(
n

pn

)
= nHb (p) +O(log n),

where Hb(p) is the binary entropy function.

Tn ≥
n− log

(∑kn
i=1

(
n
i

))
log(n+ 1)− log(4δn + 1)

(19)

≥
n− log

(
kn
(

n
n(1−ε)/2

))
log(n+ 1)− log(4δn + 1)

(20)

=
n
(

1−Hb

(
1−ε
2

)
+O( logn

n )
)

log(n+ 1)− log(4δn + 1)
, (21)

where (20) is due to
∑kn
i=1

(
n
i

)
≤ kn

(
n
kn

)
and kn ≤

(
1−ε
2

)
n.

Furthermore, if δn = O(n
1−ε′

2 ), and ε, ε′ does not depend on n, then we have

Tn = Ω

(
n

log n

)
.



APPENDIX B
PROOF OF THEOREM 3.4

Theorem 3.4: (Impossibility of Poly(n)Query Complexity)
If both the following conditions are satisfied:
• 1

2n ≥ kn ≥ C1n
ε1

• δn = Ω(k
1+ε2

2
n )

where ε1, ε2 ∈ (0, 1), and C1 > 0, then T ∗n(kn, δn) is ω(np), for all p ∈ N. In words, there does not exist querying methods
with Poly(n) query complexity that can do the job.

Before we further bounding (5), we give two technical lemma:
Lemma B.1: For n ≥ 2, the following binomial bound holds:

4n√
π
2 (2n+ 1)

≤
(

2n

n

)
≤ 4n√

πn

Lemma B.2: For δ ≤ n/2, the following bound holds:

n/2+δ∑
k=n/2−δ

(
n

k

)
≥ 2n

(
1− 2 exp

(
−δ

2

n

))
Now, we are ready to prove Theorem 3.4.

Proof. (proof of Theorem 3.4)

We show that as long as kn = Ω (nε) and δn = Ω

(
k

1+ε′
2

n

)
, the bound given in Theorem 3.3 is Ω(n).

From Theorem 3.3, we know that as long as

Tn ≤ τ =

(
n
n
2

)
2
∑kn/2
α=2δn

(
kn/2
α

)∑kn/2
δ=2δn

(
kn/2
α−δ

)(
n−kn

n/2−2α+δ
) , (22)

the data set cannot be reconstructed successfully.
Applying Lemma B.1, we see that
1)
(
n
n/2

)
≥ 2n√

π
2 (n+1)

2)
(

n−kn
n/2−2α+δ

)
≤
(

n−kn
(n−kn)/2

)
≤ 2n−kn√

π
2 (n−kn)

.

Thus (22) is lower bounded by

≥ 2n−1√
π
2 (n+ 1)

×
kn/2∑
α=2δn

(
kn/2

α

) α∑
δ=2δn

(
kn/2

α− δ

)(
2n−kn√
π
2 (n− kn)

)
−1

=

√
n− kn

2
√
n+ 1

2−kn
kn/2∑
α=2δn

(
kn/2

α

) α∑
δ=2δn

(
kn/2

α− δ

)
−1

=

√
n− kn

2
√
n+ 1

2−kn
kn/2∑
α=2δn

(
kn/2

α

) α−2δn∑
i=0

(
kn/2

i

)
−1

(23)

Notice that
kn/2∑
α=2δn

(
kn/2

α

) α−2δn∑
i=0

(
kn/2

i

)

≤ 2kn −

 kn/4+2δn∑
j=kn/4−2δn

(
kn/2

j

)2

(24)

≤ 2kn −
[
2kn/2

(
1− 2 exp

(
−2δ2n
kn

))]2
(25)



= 4 exp

(
−2δ2n
kn

)
− 4 exp

(
−2δ2n
kn

)2

, (26)

where (24) is due to the observation of summation region, and (25) is due to Lemma (B.2).
Applying (26), we have

(23) ≥
√
n− kn

8
√
n+ 1

{
exp(−2δ2n

kn
)− exp

(
−2δ2n
kn

)2
}−1

=

√
n− kn

8
√
n+ 1︸ ︷︷ ︸
(a)

exp

(
2δ2n
kn

)
︸ ︷︷ ︸

(b)

{
1− exp

(
−2δ2n
kn

)}−1
︸ ︷︷ ︸

(c)

As long as n→∞,
1) (a) ≥ 1

8
√
2

, due to the assumption 1
2n > kn

2) (b) = ω(np) for all integer p, due to the fact

exp

(
2δ2n
kn

)
≥ exp

(
kε2/2n

)
≥ exp

(
C1n

ε1ε2/2
)

≥ exp (p log n) = np

3) (c) ≥ 1

Combine (a), (b), (c) together, we conclude that as long as Tn polynomial in n, the successful recovery is impossible.

APPENDIX C
PROOF OF CLAIM 4.1

First, we use the notation B(1)
n1 , B

(2)
n2 to denote the independent random variables with distribution Binomial(n1, 1/2) and

Binomial(n2, 1/2) respectively. By the definition of probability of failure, Pf (x; kn, δn) is

PQ (∃x̃, ‖x̃− x‖1 > kn, ‖Qx̃−Qx‖∞ ≤ 2δn) (27)

=PQ

 ⋃
x̃∈Bckn (x)

‖Qx̃−Qx‖∞ ≤ 2δn

 (28)

≤
∑

x̃∈Bckn (x)

P (|qx− qx̃| ≤ 2δn)
Tn (29)

=

n∑
t=kn

∑
x̃∈∂Bt(x)

P (|qx− qx̃| ≤ 2δn)
Tn (30)

≤
n∑

t=kn

(
n

t

)
max

t++t−=t
P
(∣∣∣B(1)

t+ −B
(2)
t−

∣∣∣ ≤ 2δn

)Tn
(31)

Here we use BR(x) to denote the ball centered at x with radius R, and use ∂BR(x) to denote the boundary of BR(x).
Notice that (29) is due to union bound, (31) is due to the fact that each qi is generated according to Ber(1/2). To handle (31),
we give the following lemma:

Lemma C.1: For t1 + t2 = T , T is even, the following fact holds:

P
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ)
≤P
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ) ,
where B(1)

t1 , B
(2)
t2 are independent random variables with distribution Binomial(n1, 1/2) and Binomial(n2, 1/2) respectively.

From lemma C.1, we see that the maximum of (31) occurs when t+ = t− = t/2. For simplicity we assume t even, and
(31) becomes

n∑
t=kn

(
n

t

)
P
(∣∣∣B(1)

t/2 −B
(2)
t/22

∣∣∣ ≤ 2δn

)Tn
(32)

=

n∑
t=kn

(
n

t

)
P
(∣∣∣∣B(1)

t/2 −B
(2)
t/2 −

t

2

∣∣∣∣ ≤ 2δn

)Tn
(33)



=

n∑
t=kn

(
n

t

)
P
(∣∣∣∣Bt − t

2

∣∣∣∣ ≤ 2δn

)Tn
(34)

=

n∑
t=kn

(
n

t

)
P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn)

Tn , (35)

here Bt in (33) denotes the random variable with distribution Binomial(t, 1/2). (33) is due to the basic combinatorial fact,
and (34) is due to the fact that our construction of Q is independent.

APPENDIX D
TECHNICAL LEMMAS

A. Lemma D.1

Lemma D.1: Let Skn , Vi, T1 and T2 be defined as before. Then

max
S⊂[n]

∣∣{(x, x̃) ∈ Skn
∣∣ ||S ∩ T1| − |S ∩ T2|| > 2δn

}∣∣ (36)

achieves its maximum when |S| = n
2 .

Proof. First, let |S| = s, s ∈ [n]. Then (36) becomes

2n−kn+1

kn/2∑
α=0

α∑
δ=2δn

(
s

α

)(
n− s

kn/2− α

)(
s− α
α− δ

)(
n− s− kn/2 + α

kn/2 + δ − α

)

=2n−kn+1

(
n

kn/2, kn/2, n− kn

)∑kn/2
α=0

∑α
δ=2δn

(
kn/2
α

)(
kn/2
α−δ

)(
n−kn
s−2α+δ

)(
n
s

) (37)

Therefore, maximize (36) is equivalent to maximize (37) over all possible s. After change of variables, (37) becomes∑
|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)(
n−kn
s−(i+j)

)(
n
s

)
=

∑
k

∑
i+j=k
|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)(
n−kn
s−k

)
(
n
s

)
=
∑
k


∑

i+j=k
|i−j|>2δn

(
kn/2
i

)(
kn/2
j

)
(
kn
k

)


︸ ︷︷ ︸
ak

((
kn
k

)(
n−kn
s−k

)(
n
s

) )
︸ ︷︷ ︸

bk(s)

=
∑
k

ak · bk(s).

One can observe the following facts:
• ak is symmetric to k = kn/2, that is, ak = akn−k, since one can change the variables (i′, j′) = (kn/2− i, kn/2− j).
• ak is maximized as k = kn/2. This can be proved by writing ak in another form:

ak =

∑
i>(k+2δn)/2 or
i<(k−δn)/2

(
k
i

)(
kn−k
kn/2−i

)
(
kn
kn/2

) ,

and it achieves maximum at k = kn/2. Also, ak is increasing in [0, kn/2] (and hence decreasing in [kn/2, kn]).
• For all s ∈ [n],

∑
k bk(s) = 1.

• For s ∈ [0, n/2), bk(s) is maximized at k∗ ∈ [0, kn/2); for s ∈ (n/2, n], bk(s) is maximized at k∗ ∈ (kn/2, kn]. Also,
bk(s) is increasing for k ≤ k∗, and decreasing for k ≥ k∗.

• bk(s) is symmetric to (n/2, kn/2), that is,
bk(s) = bkn−k(n− s).

•
∑
k ak · bk(s) is symmetric to n/2, that is,

∑
k ak · bk(s) =

∑
k ak · bk(n− s).



Now, we are ready to show
∑
k ak · bk(s) attains its maximum at x = n/2. For any s ∈ [n], we have∑

k

ak · bk(s) =
∑
k

ak ·
(
bk(s) + bk(n− s)

2

)
.

Consider the equation

bk(n/2) =

(
bk(s) + bk(n− s)

2

)
.

There’s exactly a zero at k = ξ ∈ [0, n/2] for all s, and due to symmetry, there’s another zero at k = kn − ξ. Besides,
bk(n/2) ≥

(
bk(s)+bk(n−s)

2

)
at k = kn/2. Therefore we conclude that

bk(n/2) ≥
(
bk(s) + bk(n− s)

2

)
for s ∈ [ξ, kn − ξ], and

bk(n/2) <

(
bk(s) + bk(n− s)

2

)
for s ∈ [ξ, kn − ξ]c (With a slight abuse of notation, we denote [0, kn]\[ξ, kn − ξ] as [ξ, kn − ξ]c).
Notice that since ∑

k

bk(s) =
∑
k

(
bk(s) + bk(n− s)

2

)
= 1,

we have ∑
k∈[ξ,kn−ξ]

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))

=−
∑

k∈[ξ,kn−ξ]c

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
. (38)

Now, consider ∑
k

ak · bk(n/2)−
∑
k

ak · bk(s)

=
∑
k

ak ·
(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
=

∑
k∈[ξ,kn−ξ]

ak ·
(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))

+
∑

k∈[ξ,kn−ξ]c
ak ·

(
bk(n/2)−

(
bk(s) + bk(n− s)

2

))
≥0. (39)

(39) is due to the fact that ak1 ≥ ak2 , for all k1 ∈ [ξ, kn − ξ], k2 ∈ [ξ, kn − ξ]c and (38). Since it holds for all s ∈ [n], the
proof is complete.

B. Proof of Lemma C.1

Lemma C.1: For t1 + t2 = T , T is even, the following fact holds:

P
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ)
≤P
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ) ,
where B(1)

t1 , B
(2)
t2 are independent random variables with distribution Binomial(n1, 1/2) and Binomial(n2, 1/2) respectively.

Proof. First, note that for Bt ∼ Binomial
(
t, 12
)
, t−Bt has the same distribution with Bt. Therefore,

P
(∣∣∣B(1)

t1 −B
(2)
t2

∣∣∣ ≤ δ)
=P (|Bt1+t2 − t2| ≤ δ)



=P (t2 − δ ≤ BT ≤ t2 + δ)

≤P (T/2− δ ≤ BT ≤ T/2 + δ)

=P
(∣∣∣B(1)

T/2 −B
(2)
T/2

∣∣∣ ≤ δ) .

C. Proof of Lemma 4.1

Lemma 4.1: Let Bt
iid∼ Binomial(t, 1/2), δn ∈ (0, t/16) then the following two upper bounds hold:

1) P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 4δn+1√
πt

.
This bound is used when δn is small (with respect to t).

2) P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤ 1− 2
15e
−64δ2n/t.

This bound is used when δn is large (with respect to t).

The proof can be found in Appendix D in [9].
Proof.

1) Since P(Bt = t/2) > P(Bt = k), for all k ∈ [0, t], we have

P (t/2− 2δn ≤ Bt ≤ t/2 + 2δn) ≤(4δn + 1)P(Bt = t/2)

≤4δn + 1√
πt

.

The last inequality is due to Lemma B.1.
2) For convenience, let δn = 2δ′n. This is equivalent to show

P(Bt > t/2 + δn) ≥ 1

15
exp

(
−16δ2n/t

)
.

The proof is first given in [10], which involves some elementary estimates. For the sake of completeness, we state it again.
Write t = 2m. We have

P(Bt ≥ m+ δn) = 2−2m
m∑

j=δn

(
2m

m+ j

)

≥2−2m
2δn−1∑
j=δn

(
2m

m+ j

)

=2−2m
sδn−1∑
j=δn

(
2m

m

)
m

m+ j
· m− 1

m+ j − 1
· · · m− j + 1

m+ 1

≥ 1√
m

2δn−1∑
j=δn

j∏
i=1

(
1− j

m+ i

)

≥ 1√
m

(
1− 2δn

m

)2δ

≥ 1√
m
· exp(−8δ2n/m).

For δn ≥
√
m
4 , the last expression is at least 1

8 exp
(−16δn

n

)
. For 0 ≤ δn <

√
m
4 , we have

P(Bt > m+ δn) > P(Bt > m+

√
m

4
) ≥ 1

8
exp(−1/2) >

1

15
.

Thus the claimed bound holds for all δn ≤ m/4.



D. Proof of Lemma B.1

Lemma B.1: For n ≥ 2, the following binomial bound holds:

4n√
π
2 (2n+ 1)

≤
(

2n

n

)
≤ 4n√

πn

Proof. First we consider the two expressions:

2n

((
2n

n

)
1

4n

)2

=
1

2

3

2

3

4

5

4
· · · 2n− 1

2n− 2︸ ︷︷ ︸
(1)

2n− 1

2n︸ ︷︷ ︸
(2)

(40)

=
1

2

n∏
j=2

(
1 +

1

4j(j − 1)

)
, (41)

(2n+ 1)

((
2n

n

)
1

4n

)2

(42)

=
1

2

3

2

3

4

5

4
· · · 2n− 1

2n− 2

2n− 1

2n︸ ︷︷ ︸
(1)

2n+ 1

2n︸ ︷︷ ︸
(3)

=

n∏
j=1

(
1− 1

4j2

)
. (43)

By Wallis’s formula, (1) converges to 2
π , and (2), (3) converge to 1. Therefore, both (41), (43) converge to 2

π . Notice that
according to the left hand side of two expressions, (41) is increasing and (43) is decreasing, with the same limit. Therefore
we conclude that

2n

((
2n

n

)
1

4n

)2

≤ 2

π
, (44)

and

(2n+ 1)

((
2n

n

)
1

4n

)2

≥ 2

π
. (45)

Since this holds for n ≥ 2, the proof is complete.

E. Proof of Lemma B.2

Lemma B.2: For δ ≤ n/2, the following bound holds:

n/2+δ∑
k=n/2−δ

(
n

k

)
≥ 2n

(
1− 2 exp

(
−δ

2

n

))

Proof. This is a direct application of Chernoff Bound. Let Xi
i.i.d∼ Ber( 1

2 ), i ∈ [N ]. Applying Chernoff inequality on
X =

∑N
1 Xi, we have

P(X ≥ EX + δ) ≤ exp

(
−δ2

n

)
.

Therefore,
n/2+δ∑

k=n/2−δ

(
n

k

)
≥2n

(
1− 2 exp

(
−2δ2

n

))

≥2n
(

1− 2 exp

(
−δ

2

n

))


