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OUTLINE

e CONVERGENCE IN DISTRIBUTION

© SKOROHOD’S THOEREM

e MOMENT AND IN-DISTRIBUTION CONVERGENCE

e BERRY-ESSEEN THEOREM
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CONVERGENCE IN DISTRIBUTION

DEFINITION (CONVERGENCE IN DISTRIBUTION)

Let random variables X,, and X have distributions F},(-) and F'(-)
respectively. Then X, is said to converge in distribution to X, if

F,=F

or equivalently,
lim Pr[X, <z] = Pr[X < z]

n—o0

for evey z such that Pr[X = z| = 0.

Remark: We only require F,,(-) to converge at every continuous point!
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CONVERGENCE IN DISTRIBUTION

EXAMPLE
A
Take Pnk = —
n

k) = (Z)(%)m - %)m k), for0<k <k

Then
i, = Poisson(\).
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P
X,, — X IMPLIES X,, = X

THEOREM

X, Px implies X,, = X

PROOF.

Obseve that Pr[A < a] — Pr|[|A — B|] < Pr[B < a+b.
Then

| A\

PriX <xz—e —Pr||X,—X|>¢ < PriX, <(z—e¢)+¢ = Pr[X, <z,

and
Pr(X, <z|—Pr|[|X, — X|>¢ < Pr[X <z +¢.
Hence we get
PriX <z —¢€— Pr[| X, — X| > ¢ < PriX, <z]
< PriX <z +e€e+ Pri|X, — X| > €
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P
X,, — X IMPLIES X,, = X

CON’D.

which implies that

PriX <z — ¢ <liminf Pr[X, <z
< limsup Pr[X,, < z]
< PriX <X + ¢

Therefore, for each continuous point, we have

lim Pr[X, <z|= Pr[X <z

n—o0

Remark: X,, = X does not imply X,, LN
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P
COUNTEREXAMPLE FOR X,, = X IMPLYING X, — X

X1 Y and X ~ Ber(p), Y ~Ber(p). Let X,, = X, for all n. Then we
have

X, =Y, butX, 4 Y

Remark: Convergence in distribution gives NO information between
the correlation of each random variables!
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FUNDAMENTAL THEOREM

THEOREM (SKOROGOD’S THEOREM)

Suppose 1, and p. are probability measures on (R, B), and i, = (.
Then there exist random variables Y,, and 'Y such that:

1. they are both defined on common probability space (2, F,P)
2. PrlY, <y] = pn(—o0,y], forally

3. PrlY <y] = u(—o0,y], forally

4. lim Y, (w) =Y (w), for every w in

n—oo

v

Remark: This implies that cdfs are sufficient; we do not need to rely on
the inherited probability space.
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MOTIVATION

Historical Aspects

e CLT concerns the situation that the limit distribution of the
normalized sum is normal

e As an example, for i.i.d. zero-mean sequence X1, Xo, ...

X1 —l——l-Xn

=N

where N has standard normal distribution

e Question: What is the rare of convergence of normalized sum
distribution to standard normal distrubution?
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BERRY-ESSEEN THEOREM

e The first convergence rate estimates in the CLT were obtainrd by
AM, Lyapounov in 1900-1901

e In the beginning of 1940s, the classic Berry-Esseen estimate
came to the light
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BERRY-ESSEEN THEOREM

THEOREM (BERRY-ESSEEN THEOREM (I.I.D. CASE))
B3

Fo(z) — ®(z)| <
:g@{l () (fﬁ)l_Cag\/ﬁ

where

o F, is the cdf of 21T T Xn

® js the standard normal cdf

B3 =E[|X —EX|’]

o2 =E[|X —EX|?

C' is a universal constant, independent of n, F,
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BERRY-ESSEEN THEOREM

THEOREM (BERRY-ESSEEN THEOREM (INDEPENDENT CASE))

e e R R Ve o
n

zeR Sn

where
e ® js the standard normal cdf
o, =E[(X1+ ...+ X,) —E(X1+ ... + Xp)°]
0 82 =FE[(X1+ ... + Xp) —E(X1 + ... + Xp) %]
e C' is a universal constant, independent of n, F,

Remark:

V1043

6v/27
e Upper bound of C: C' < 0.4785 (Tyurin (2010))

e Lower bound of C: C >

~ 0.40973 (Esseen (1956))
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