A First Look of Probability Measure

Wei-Ning Chen

August 4, 2016

Outline

(1) Probability Triple
(2) σ-algebra and Probability Measure

3 Constructing Probability Measure
(4) Measurable Set, Measurable Function
(5) Random Variable

In this lecture, we will give the probability theory a rigorous definition

Probability Triple

We say a probablity measure composes a probablity triple :

$$
(\Omega, \mathcal{F}, \mathcal{P}), \text { where }
$$

- Ω : the sample space
- \mathcal{F} : event space, i.e. a collection of events (an event is a subset of Ω, i.e. if $A \in \mathcal{F}$, then $A \subset \Omega$)
- \mathcal{P} : a set function, such that

$$
\mathcal{P}: \mathcal{F} \rightarrow[0,1]
$$

Probability Measure

The probability measure is a set function from \mathcal{F} to $[0,1]$ satisfies the following properties (probability axioms):

- $P(A) \in \mathbb{R}, P(A) \geq 0$, for all $A \in \mathcal{F}$
- $P(\phi)=0^{*}$ and $P(\Omega)=1$
- P is countably addtitive, i.e.
if $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ disjoint, then $P\left(A_{1} \cup A_{2} \ldots \cup A_{n} \cup \ldots\right)=\sum_{n=1}^{\infty} P\left(A_{i}\right)$

σ-FIELD

Now let's dive into the event space.

- What is a valid event?
- Can we put all events into \mathcal{F}, i.e. $\mathcal{F}=2^{\Omega}$?

The answer is yes, but something wierd will happen.

EXAMPLE (UNIFORM DISTRIBUTION)

Consider a uniform distibution X on $[0,1]$.
To reflect the fact that X is "uniform" on the interval $[0,1]$, the probability that X lies in some subset should be unaffected by "shifting" (with wrap-around) the subset by a fixed amount. That is, if for each subset $A \subseteq[0,1]$, we define the \mathbf{r}-shift by

$$
A \oplus r:=\{a+r ; a \in A, a+r \leq 1\} \cup\{a+r-1 ; a \in A, a+r>1\}
$$

then we have $P(A)=P(A \oplus r)$.

PROPOSITION

There does not exist a definition of uniform probability $P(A)$, defined for all subsets $A \subset[0,1]$, satisfying the probability axioms. That is, there does not exist an uniform probability measure \mathcal{P} defined on $\mathcal{F}=2^{\Omega}$.

PROOF.

Define an equivalence relation on $[0,1]$ by

$$
x \sim y \text { if and only if } y-x \text { is rational. }
$$

Let H be a subset of $[0,1]$ consisting of precisely one element from each equivalence class. For definiteness, assume that $0 \notin H$. Now, since H contains an element of each equivalence class, we see that each point in $(0,1]$ is contained in the union

$$
\bigcup_{r \in[0,1), r \text { rational }}
$$ shifts of H.

PROOF (CONTINUE).

Since H contains just one point from each equivalence class, we see that these sets $H \oplus r$, for rational $r \in[0,1)$, are all disjoint. But then, by countable additivity, we have

$$
1=P((0,1])=\sum_{r \in(0,1]} P(H \oplus r)=\sum_{r \in(0,1]} P(H)
$$

Hence contrdiction occurs.

$\sigma-$ FIELD

Now it's time to define what we can add into our σ-field.

We say a collection of subsets of Ω is a σ-field if it satisfies

- $\phi \in \mathcal{F}$ and $\Omega \in \mathcal{F}(*)$
- If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$
- If $A_{1}, \ldots, A_{n}, \ldots \in \mathcal{F}$, then $A_{1} \cup \ldots \cup A_{n} \cup \ldots \in \mathcal{F}$
- If $A_{1}, \ldots, A_{n}, \ldots \in \mathcal{F}$, then $A_{1} \cap \ldots \cap A_{n} \cap \ldots \in \mathcal{F}(*)$

Question: How can we construct a σ-field?

SEMIALGEBRA, ALGEBRA, σ-ALGEBRA

DEFINITION (SEMIALGEBRA)

We say a collection \mathcal{J} is a semialgrebra, if it contains 0 and ϕ, and is closed under finite intersection, and the complement of any element of \mathcal{J} is equal to a finite disjoint union of elements of \mathcal{J}.

Since \mathcal{J} is only a semialgebra, how can we create a cr-algebra? As a first try, we might consider

$$
B_{0}=\{\text { all finite unions of elements of } \mathcal{J})
$$

SEMIALGEBRA, ALGEBRA, σ-ALGEBRA

EXERCISE

- Prove that B_{0} is an algebra (or, field) of subsets of Ω, meaning that it contains ϕ, and Ω, and is closed under the formation of complements and of finite unions and intersections.
- Prove that B_{0} is not a σ-algebra.

As a second try, we might consider

$$
B_{1}=\{\text { all finite or countable unions of elements of } \mathcal{J})
$$

Unfortunately, B_{1} is still not a σ-algebra.

EXERCISE

Prove that B_{1} is not a σ-algebra. (Hint: consider Cantor set)
Therefore, we introduce the following powerful theorem...

Constructing Probability Measure

Theorem (The Extension Theorem)

Let \mathcal{J} be a semialgebra of Ω, and let $P: \mathcal{J} \rightarrow[0,1]$, with $P(\phi)=0$, $P(\Omega)=1$, satisfying

- Finite superadditivity property that

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{i=1}^{k} P\left(A_{i}\right) \tag{1}
\end{equation*}
$$

whenever $A_{1}, \ldots, A_{k} \in \mathcal{J}$, and $\bigcup_{i=1}^{k} A_{i} \in \mathcal{J}$, and $\left\{A_{i}\right\}$ are disjoint.

Constructing Probability Measure

TheOrem (THE EXTENSION THEOREM)

- Countable monotonicity property , such that

$$
\begin{equation*}
P(A) \leq \sum_{n} P\left(A_{n}\right) \tag{2}
\end{equation*}
$$

$$
\text { for } A, A_{1}, \ldots, A_{n} \in \mathcal{J}, \text { and } A \subseteq \bigcup_{n} A_{n}
$$

Then there is a σ-algebra $\mathcal{M} \supseteq \mathcal{J}$, and a countably additive probability measure P^{*} on \mathcal{M}, such that $P^{*}(A)=P(A)$ for all $A \in \mathcal{J}$.
(That is, $\left(\Omega, \mathcal{M}, P^{*}\right)$ is a valid probability triple, which agrees with our previous probabilities on \mathcal{J})

Uniqueness of Extension

PROPOSITION

The Uniqueness of Extensions The extended probability P^{*} is unique, i.e. if (Ω, \mathcal{F}, P) and (Ω, \mathcal{M}, Q) are two probability triples and $\mathcal{F} \subset \mathcal{M}$, $P(\mathcal{A})=Q(\mathcal{A})$ for all $\mathcal{A} \in \mathcal{J}$, then $P(\mathcal{A})=Q(\mathcal{A})$ for all $\mathcal{A} \in \mathcal{F}$

In fact, the uniqueness allows us to define cumulative distribution function (CDF) of (Ω, \mathcal{F}, P).

It will be clear after we introduce Borel Sets on \mathbb{R}.

Measurable

Now, we already define a probability function P on a σ-field \mathcal{F}.

DEfinition (MEASURAbLE SEt)

We say a subset \mathcal{A} is measurable with respect to (Ω, \mathcal{F}, P), if $\mathcal{A} \in \mathcal{F}$.

ExERCISE

Construct a non-measurable set over [0, 1], with uniform distrobution.

Definition (MEASURAble Function)

Let (Ω, \mathcal{F}, P) and $\left(X, \mathcal{F}_{x}, P_{x}\right)$ be two probability spaces. We say a function $f: \Omega \rightarrow X$ is measurable, if $f^{-1}(\mathcal{A}) \in \mathcal{F}$, for all $\mathcal{A} \in \mathcal{F}_{x}$

Borel Set

To move on to the next topic random variable, we first need to consider measurable sets on \mathbb{R}.

DEFINITION

Let \mathcal{A} be a collection of subsets of Ω. We say a σ-field is generated by \mathcal{A}, denoted as $\sigma(\mathcal{A})$, if it is the smallest σ-field containing \mathcal{A}.
In fact, $\sigma(\mathcal{A})=\bigcap\{\mathcal{F}\}$, for all \mathcal{F} contains \mathcal{A}.
Now, let $\mathcal{J}=\{$ all intervals in $\mathbb{R}\}$
We say a Borel σ - field \mathcal{B} is $\sigma(\mathcal{J})$, and elements in \mathcal{B} is called Borel sets.

EXERCISE

Show that $\sigma(\mathcal{A})=\sigma(\{(-\infty, x]\})$.

Borel Set

Since a probability on $\{(-\infty, x]\}$ uniquely determines a probablility on \mathcal{J}, and hence by the uniqueness of extension, we have the following corollary:

Corollary (Cumulative Distribution)

We can define the culmulative distribution function as $F(x)=P((-\infty, x])$, and it uniquely determines the probability function on $\left(\mathbb{R}, \mathcal{F}, P^{*}\right)$.

Random Variable

DEFINITION

Given a probability triple (Ω, \mathcal{F}, P), a random variable is a real function $X: \Omega \rightarrow \mathbb{R}$, such that $X(\omega)$ is measurable.
Alternatively, we can write as $\forall x \in \mathbb{R},\{\omega \in \Omega ; X(\omega) \leq\} \in \mathcal{F}$, or $X^{-1}((-\infty, x]) \in \mathcal{F}$.

Remark:
Complements, unions and intersections are preserved under inverse image, i.e.

$$
\begin{gathered}
f^{-1}\left(D^{c}\right)=\left(f^{-1}(D)\right)^{c} \\
f^{-1}\left(D_{1} \cup D_{2}\right)=f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right) \\
f^{-1}\left(D_{1} \cap D_{2}\right)=f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)
\end{gathered}
$$

Hence $X^{-1}(B) \in \mathcal{F}, \forall B$ Borel.

Random Variable

Proposition (Properties of Random Variable)

- $X=\mathbb{1}_{A}$ is a random variable $\forall A \in \mathcal{F}$
- If X, Y are random variables, then $X+c, c X, X^{2}, X+Y, X Y$ are all random variables
- If Z_{1}, Z_{2}, \ldots are random variables and $\lim _{n \rightarrow \infty} Z_{n}(\omega)$ exists for all $\omega \in \Omega$, then $Z(\omega)=\lim _{n \rightarrow \infty} Z_{n}(\omega)$ is a random variable.

The proof is left as exercises.

Random Variable

Quesion: Why do we need random variables?

Random Variable

- Random variable simplies the (probably) complicated probablity space while preserving the structure of the orighinal probability function
- Random variable induces another probablity triple on \mathbb{R}, that is

$$
(\Omega, \mathcal{F}, P) \rightarrow\left(\mathcal{X}, \mathcal{B}, P_{x}\right)
$$

- We can do more analysis on real number

