A FIRST LOOK OF PROBABILITY MEASURE

Wei-Ning Chen

August 4, 2016

WEI-NING CHEN

A FIRST LOOK OF PROBABILITY MEASURE

AUGUST 4, 2016 1 / 21

OUTLINE

PROBABILITY TRIPLE

- **2** σ -Algebra and Probability Measure
- **3** Constructing Probability Measure
- MEASURABLE SET, MEASURABLE FUNCTION

5 Random Variable

In this lecture, we will give the probability theory a rigorous definition

PROBABILITY TRIPLE

We say a probablity measure composes a probablity triple :

 $(\Omega, \mathcal{F}, \mathcal{P})$, where

- Ω : the sample space
- *F* : event space, i.e. a collection of events
 (an event is a subset of Ω, i.e. if A ∈ F, then A ⊂ Ω)
- \mathcal{P} : a set function, such that

$$\mathcal{P}: \mathcal{F} \to [0,1]$$

PROBABILITY MEASURE

The probability measure is a set function from \mathcal{F} to [0,1] satisfies the following properties (probability axioms):

•
$$P(A) \in \mathbb{R}, P(A) \ge 0$$
, for all $A \in \mathcal{F}$

•
$$P(\phi) = 0^*$$
 and $P(\Omega) = 1$

• P is countably additive, i.e.

if $A_1, A_2, ..., A_n, ...$ disjoint, then $P(A_1 \cup A_2 ... \cup A_n \cup ...) = \sum_{n=1}^{\infty} P(A_i)$

Now let's dive into the event space.

• What is a valid event ?

• Can we put all events into \mathcal{F} , i.e. $\mathcal{F} = 2^{\Omega}$?

The answer is yes, but something wierd will happen.

$\sigma\text{-FIELD}$

EXAMPLE (UNIFORM DISTRIBUTION)

Consider a uniform distibution X on [0, 1]. To reflect the fact that X is "uniform" on the interval [0, 1], the probability that X lies in some subset should be unaffected by "shifting" (with wrap-around) the subset by a fixed amount. That is, if for each subset $A \subseteq [0, 1]$, we define the **r-shift** by

$$A \oplus r \coloneqq \{a+r; a \in A, a+r \le 1\} \cup \{a+r-1; a \in A, a+r > 1\}$$

then we have $P(A) = P(A \oplus r)$.

< 回 > < 三 > < 三 >

PROPOSITION

There does not exist a definition of uniform probability P(A), defined for all subsets $A \subset [0, 1]$, satisfying the probability axioms. That is, there does not exist an uniform probability measure \mathcal{P} defined on $\mathcal{F} = 2^{\Omega}$.

PROOF.

Define an equivalence relation on [0,1] by

 $x \sim y$ if and only if y - x is rational.

Let *H* be a subset of [0, 1] consisting of precisely one element from each equivalence class. For definiteness, assume that $0 \notin H$. Now, since *H* contains an element of each equivalence class, we see that each point in (0, 1] is contained in the union $\bigcup_{r \in [0, 1), r \text{ rational}} (H \oplus r)$ of

shifts of H.

WEI-NING CHEN

PROOF (CONTINUE).

Since *H* contains just one point from each equivalence class, we see that these sets $H \oplus r$, for rational $r \in [0, 1)$, are all disjoint. But then, by countable additivity, we have

$$1 = P((0,1]) = \sum_{r \in (0,1]} P(H \oplus r) = \sum_{r \in (0,1]} P(H).$$

Hence contrdiction occurs.

WEI-NING CHEN

A FIRST LOOK OF PROBABILITY MEASURE

AUGUST 4, 2016 8 / 21

$\sigma\text{-}\ensuremath{\mathsf{FIELD}}$

Now it's time to define what we can add into our σ -field.

We say a collection of subsets of Ω is a σ -field if it satisfies

•
$$\phi \in \mathcal{F}$$
 and $\Omega \in \mathcal{F}(*)$

- If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- If $A_1, ..., A_n, ... \in \mathcal{F}$, then $A_1 \cup ... \cup A_n \cup ... \in \mathcal{F}$
- If $A_1, ..., A_n, ... \in \mathcal{F}$, then $A_1 \cap ... \cap A_n \cap ... \in \mathcal{F}(*)$

Question: How can we construct a σ -field?

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

DEFINITION (SEMIALGEBRA)

We say a collection \mathcal{J} is a *semialgrebra*, if it contains 0 and ϕ , and is closed under finite intersection, and the complement of any element of \mathcal{J} is equal to a finite disjoint union of elements of \mathcal{J} .

Since \mathcal{J} is only a semialgebra, how can we create a cr-algebra? As a first try, we might consider

 $B_0 = \{ all finite unions of elements of <math>\mathcal{J})$

EXERCISE

- Prove that B₀ is an algebra (or, field) of subsets of Ω, meaning that it contains φ, and Ω, and is closed under the formation of complements and of finite unions and intersections.
- Prove that B_0 is not a σ -algebra.

As a second try, we might consider

 $B_1 = \{ all finite or countable unions of elements of <math>\mathcal{J})$

Unfortunately, B_1 is still not a σ -algebra.

EXERCISE

Prove that B_1 is not a σ -algebra. (Hint: consider Cantor set)

Therefore, we introduce the following powerful theorem...

WEI-NING CHEN

A FIRST LOOK OF PROBABILITY MEASURE

AUGUST 4, 2016

11/21

CONSTRUCTING PROBABILITY MEASURE

THEOREM (THE EXTENSION THEOREM)

Let \mathcal{J} be a semialgebra of Ω , and let $P : \mathcal{J} \to [0, 1]$, with $P(\phi) = 0$, $P(\Omega) = 1$, satisfying

Finite superadditivity property that

$$P(\bigcup_{i=1}^{k} A_i) \ge \sum_{i=1}^{k} P(A_i),$$
(1)

whenever $A_1, ..., A_k \in \mathcal{J}$, and $\bigcup_{i=1}^k A_i \in \mathcal{J}$, and $\{A_i\}$ are disjoint.

CONSTRUCTING PROBABILITY MEASURE

THEOREM (THE EXTENSION THEOREM)

Countable monotonicity property , such that

$$P(A) \le \sum_{n} P(A_n) \tag{2}$$

for
$$A, A_1, ..., A_n \in \mathcal{J}$$
 , and $A \subseteq \bigcup_n A_n$

Then there is a σ -algebra $\mathcal{M} \supseteq \mathcal{J}$, and a countably additive probability measure P^* on \mathcal{M} , such that $P^*(A) = P(A)$ for all $A \in \mathcal{J}$. (That is, $(\Omega, \mathcal{M}, P^*)$ is a valid probability triple, which agrees with our previous probabilities on \mathcal{J})

UNIQUENESS OF EXTENSION

PROPOSITION

The Uniqueness of Extensions The extended probability P^* is unique, i.e. if (Ω, \mathcal{F}, P) and (Ω, \mathcal{M}, Q) are two probability triples and $\mathcal{F} \subset \mathcal{M}$, $P(\mathcal{A}) = Q(\mathcal{A})$ for all $\mathcal{A} \in \mathcal{J}$, then $P(\mathcal{A}) = Q(\mathcal{A})$ for all $\mathcal{A} \in \mathcal{F}$

In fact, the uniqueness allows us to define cumulative distribution function (CDF) of (Ω, \mathcal{F}, P) .

It will be clear after we introduce Borel Sets on \mathbb{R} .

Now, we already define a probability function P on a σ -field \mathcal{F} .

DEFINITION (MEASURABLE SET)

We say a subset A is measurable with respect to (Ω, \mathcal{F}, P) , if $A \in \mathcal{F}$.

EXERCISE

Construct a non-measurable set over [0,1], with uniform distrobution.

DEFINITION (MEASURABLE FUNCTION)

Let (Ω, \mathcal{F}, P) and (X, \mathcal{F}_x, P_x) be two probability spaces. We say a function $f : \Omega \to X$ is measurable, if $f^{-1}(\mathcal{A}) \in \mathcal{F}$, for all $\mathcal{A} \in \mathcal{F}_x$

ヘロン 人間と 人目と 人口と

BOREL SET

To move on to the next topic **random variable**, we first need to consider measurable sets on \mathbb{R} .

DEFINITION

Let \mathcal{A} be a collection of subsets of Ω . We say a σ -field is generated by \mathcal{A} , denoted as $\sigma(\mathcal{A})$, if it is the smallest σ -field containing \mathcal{A} . In fact, $\sigma(\mathcal{A}) = \bigcap \{\mathcal{F}\}$, for all \mathcal{F} contains \mathcal{A} .

Now, let $\mathcal{J} = \{ all intervals in \mathbb{R} \}$

We say a Borel σ - field \mathcal{B} is $\sigma(\mathcal{J})$, and elements in \mathcal{B} is called Borel sets.

EXERCISE

Show that $\sigma(\mathcal{A}) = \sigma(\{(-\infty, x]\}).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Since a probability on $\{(-\infty, x]\}$ uniquely determines a probability on \mathcal{J} , and hence by the uniqueness of extension, we have the following corollary:

COROLLARY (CUMULATIVE DISTRIBUTION)

We can define the culmulative distribution function as $F(x) = P((-\infty, x])$, and it uniquely determines the probability function on $(\mathbb{R}, \mathcal{F}, P^*)$.

RANDOM VARIABLE

DEFINITION

Given a probability triple (Ω, \mathcal{F}, P) , a random variable is a real function $X : \Omega \to \mathbb{R}$, such that $X(\omega)$ is measurable. Alternatively, we can write as $\forall x \in \mathbb{R}$, $\{\omega \in \Omega; X(\omega) \leq\} \in \mathcal{F}$, or $X^{-1}((-\infty, x]) \in \mathcal{F}$.

Remark:

Complements, unions and intersections are preserved under inverse image, i.e.

$$f^{-1}(D^c) = (f^{-1}(D))^c$$
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$$

Hence $X^{-1}(B) \in \mathcal{F}, \forall B$ Borel.

PROPOSITION (PROPERTIES OF RANDOM VARIABLE)

- $X = \mathbb{1}_A$ is a random variable $\forall A \in \mathcal{F}$
- If X, Y are random variables, then $X + c, cX, X^2, X + Y, XY$ are all random variables
- If $Z_1, Z_2, ...$ are random variables and $\lim_{n \to \infty} Z_n(\omega)$ exists for all $\omega \in \Omega$, then $Z(\omega) = \lim_{n \to \infty} Z_n(\omega)$ is a random variable.

The proof is left as exercises.

Quesion: Why do we need random variables?

WEI-NING CHEN

A FIRST LOOK OF PROBABILITY MEASURE

AUGUST 4, 2016 20 / 21

- Random variable simplies the (probably) complicated probablity space while preserving the structure of the orighinal probability function
- Random variable induces another probablity triple on \mathbb{R} , that is

 $(\Omega, \mathcal{F}, P) \to (\mathcal{X}, \mathcal{B}, P_x)$

• We can do more analysis on real number