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1 Introduction
In information retrieval process, we dedicate in reducing the communication cost between the

interaction with the database. Most circumstances, we exploit the special structure of the problem,
and reduce the complexity of the interaction (or query ) between the user and the database. For
example, in sparse group testing problem, the goal is to recover the binary categorical data, which
may represent either positive or negative, through a series of queries. Typically the group testing
problem is assumed to be sparse; that is, the number of defectives (negative items) are at most k,
where k is much smaller then the number of total item n. If we leverage the sparse structure, it is
shown that instead of exhaustive search, which takes complexity O (n), one can recover the entire
dataset by (non-adaptive) random sampling with O (k log n) queries. The similar approach also
works in sparse histogram query problem.

However, in real life, dataset or signal usually doesn’t have natural sparse structure, and the
approach based on sparsity thus not always hold. Therefore, in this research we develop a new
strategy: first we learn the sparse sparsity through a small proportion of data, and then utilize the
sparsity to further reduce the query complexity.

2 Main Results
In this section, we give some result about learning-based query, which can be roughly divided

into adaptive and non-adaptive mechanism.

2.1 Learning-based Adaptive Query
First, we investigate the group testing problem. In the group testing problem, the dataset is

denoted as D = (y1, y2, ..., yn) ∈ {0, 1}n. Besides, we are also given some side information
x1, x2, ..., xn. Under the assumption of realizable PAC model, there exists a learnable hypothesis
classH, such that

∃h∗ ∈ H, s.t. ∀i, yi = h∗(xi).

To reduce the query complexity, we proposed the following scheme: Initially, the entire dataset is
divided into ℓ+ 1 segments with size n1, ..., nℓ+1:

D = S1 ∪ S2 ∪ ... ∪ Sℓ+1, ∀i ̸= j,Si ∩ Sj = ∅,

where the size of each segment is predetermined. In the beginning, we recover the first proportion
of dataset, and use the recovered data to learn a hypothesis h1 ∈ H. Then, utilizing h1, we can
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recover the second proportion of dataset with sparsity ϵ1 by decoding S2 ∩ h−1
1 (1) and S2 ∩ h−1

1 (0)
respectively. Note that the sparsity level ϵ1 depends on |S1| = n1.
Therefore, one can decode the i−th proportion with ϵi−1 sparsity of data by leveraging the previous
samples

∪i−1
j=1 Sj .

Algorithm 1 Adaptive Learning-based Group Testing under Realizable Assumption (AdpLGT)
Input: D, n1, n2, ..., nℓ+1

Output: The recovered data (y1, ..., yn).
1: for i = 1 to ℓ+ 1 do
2: Si ← Random Select ni items from D −

∪i−1
1 Sj;

3: hi ← ERM(
∪i−1

1 Sj);
4: Run ordinary GT algorithm on Si ∩ h−1

i (0) and Si ∩ h−1
i (1);

5: Determine (yni−1+1, yni−1+2..., yni
);

6: end for

Theorem 1 (Adaptive Learning-based Group Testing under Realizable Assumption) The time
complexity of AdpLGT is

O(d · ℓ · n
1

ℓ+1 · (log n)2),

if we set n1, ..., nℓ+1 properly, where d is the VC-dimension ofH.

Proof. This is equivalent to the following optimization problem:

min
k,ϵ

k1 + k2ϵ1 log n+ k3ϵ2 log n+ ...+ kℓ+1ϵℓ log n,

subject to k1+, ..., kℓ+1 = n,

k1 ≥ C
d log

(
1
ϵ1

)
+ log

(
ℓ
δ

)
ϵ1

,

k1 + k2 ≥ C
d log

(
1
ϵ2

)
+ log

(
ℓ
δ

)
ϵ2

,

k1 + k2 + k3 ≥ C
d log

(
1
ϵ3

)
+ log

(
ℓ
δ

)
ϵ3

,

...

k1 + ...+ kℓ ≥ C
d log

(
1
ϵℓ

)
+ log

(
ℓ
δ

)
ϵℓ

.
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Assume that δ is a constant, then the following is a feasible solution:

ϵ1 = n
1

ℓ+1 , ϵ2 = n
2

ℓ+1 , ..., ϵℓ = n
ℓ

ℓ+1 ,

k1 = C · n
1

ℓ+1

(
d

ℓ+ 1
log n+ C2 log ℓ

)
,

k2 = C · n
2

ℓ+1

(
2d

ℓ+ 1
log n+ C2 log ℓ

)
,

k3 = C · n
3

ℓ+1

(
3d

ℓ+ 1
log n+ C2 log ℓ

)
,

...

kℓ = C · n
ℓ

ℓ+1

(
ℓd

ℓ+ 1
log n+ C2 log ℓ

)
.

By choosing that ni = ki in the AdpLGT, we see that the query complexity turns out to be

O(d · ℓ · n
1
ℓ · (log n)2).

Corollary 2 The result of the optimization problem given in Theorem 1 is asymptotically tight up
to log n factor.

Corollary 3 The same asymptotic bound holds for the adaptive histogram query problem under
realizable assumption.

2.2 Agnostic Learning-based Adaptive Query
So far, we assume that the side information {xi} is related through a hypothesis class H to the

target dataset {yi}. However, in the real world, this assumption usually too strong to hold. There-
fore in this section, we investigate the similar adaptive querying approach under the assumption of
agnostic PAC learnable.

We say a concept is agnostic PAC learnable, if there exists a algorithm Aϵ,δ, such that with
probability at least 1− δ,

err (output (Aϵ,δ))−min
h∈H

err(h) ≤ ϵ.

According to literatures from learning theory, a hypothesis class is agnostic PAC learnable if
and only if it has finite VC dimension, and the sample complexity is given by

mH(ϵ, δ) = C ·
d+ log

(
1
δ

)
ϵ2

,

for some universal constant C.
For the agnostic scenario, we follow the same approach :

Initially, the entire dataset is divided into ℓ+ 1 segments:

D = S1 ∪ S2 ∪ ... ∪ Sℓ+1, ∀i ̸= j,Si ∩ Sj = ∅.

In the beginning, we recover the first proportion, and use the recovered data to learn a hypothesis
h1 ∈ H. However, in agnostic case, utilizing h1 we can only recover the second proportion of
dataset with (ϵ0 + ϵ1)−sparse, where ϵ0 denotes minh∈H err(h). Therefore, one can decode the
i−th proportion with (ϵ0 + ϵi−1) sparsity of data by leveraging the previous samples

∪i−1
j=1 Sj .

Intuitively, one can not obtain a better (smaller) sparsity then ϵ0, and hence the ultimate query
complexity should be at least Ω (ϵ0 · n log n). Thus we see the following result:
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Theorem 4 (Agnostic Learning-based Group Testing) .
The time complexity of AdpLGT under agnostic assumption is

• If n≪ 1
ϵ30

, then the query complexity is

O(d · ℓ · n
2
3 · (log n)2), for ℓ = 1

O(d · ℓ · n
4

3ℓ+4 · (log n)2), for ℓ > 1

• If n≫ 1
ϵ30

, then the query complexity is

O(ϵ0 · n · (log n)2),

if we set n1, ..., nℓ+1 properly.

Proof. The proof is similar to Theorem 1, and is ommited here.

Corollary 5 This result hold for the histogram query problem.

2.3 Non-adaptive Learning-based Query
In this section, we consider the converse bound of non-adaptive learning based query, under the

realizable assumption. First, we give a converse bound on group testing problem and histogram
query problem.

Theorem 6 (Converse Bound on Non-adaptive Group Testing) .
For non-adaptive group testing problem, the query complexity is at least Ω (d log n), where d is the
VC dimension ofH.

Proof. First note that the recovery will fail if and only if there exist one more ỹ = (ỹ1, ỹ2, ..., ỹn) ̸=
y, such that ỹ consistent with x = (x1, x2, ..., xn).
Formally, denote the query matrix as Qm ∈ {0, 1}n×m, then the event of failure is:

∃ỹ ̸= y, such that Qmy = Qmỹ, and ∃h1, h2 ∈ H, ỹ = h1(x),y = h2(x).

Note that the cardinality of query output is |{Qmy | y ∈ {0, 1}n}| = 2m, and the possible input is
at most

|{h(x) | h ∈ H,x ∈ X n}| .

Since the VC dimension ofH is d, the growth of possible y is upper bounded by
(
en
d

)d. Therefore,
setting

2m ≥
(en
d

)d

,

we obtain
m ≥ d (log e+ log n− log d)→ d log n,

and thus m = Ω(d log n).

Corollary 7 The query complexity is at least Ω (d) for the histogram query problem.
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Proof. Similar to the proof of thm 6, the event of failure is:

∃ỹ ̸= y, such that Qmy = Qmỹ, and ∃h1, h2 ∈ H, ỹ = h1(x),y = h2(x).

Note that the cardinality of query output is |{Qmy | y ∈ {0, 1, ..., n}n}| = (n + 1)m, and the
possible input is at most

|{h(x) | h ∈ H,x ∈ X n}| .

Since the VC dimension ofH is d, the growth of possible y is upper bounded by
(
en
d

)d. Therefore,
setting

(n+ 1)m ≥
(en
d

)d

,

we obtain

m ≥ d

(
log e+ log n− log d

log(n+ 1)

)
→ d,

and thus m = Ω(d).
Inspired by the converse proof, we give the following algorithm for (randomized) non-adaptive

histogram query problem:

Algorithm 2 Non-adaptive Learning-based Histogram Query (NAdpLHQ)
Input: D,x,H
Output: The recovered data y = (y1, ..., yn).

1: Randomly generate query matrix Qd ∈ {0, 1}n×d;
2: Compute z← Qd · y ▷ z ∈ {0, 1}d.
3: z̃← 0;
4: while z̃ ̸= z do ▷ exhaustively search forH until find a consistent one.
5: h← hi ∈ H;
6: ỹ← h(x);
7: z̃← Qd · y;
8: end while
9: output h(x);

A modified algorithm for group testing:

Algorithm 3 Non-adaptive Learning-based Group Testing (NAdpLGT)
Input: D,x,H
Output: The recovered data y = (y1, ..., yn).

1: Calculate m = d · log n
2: Randomly generate query matrix Qm ∈ {0, 1}n×m;
3: Compute z← Qm · y ▷ z ∈ {0, 1}m.
4: z̃← 0;
5: while z̃ ̸= z do ▷ exhaustively search forH until find a consistent one.
6: h← hi ∈ H;
7: ỹ← h(x);
8: z̃← Qm · y;
9: end while

10: output h(x);
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Similar to the idea of random querying in histogram query’s literatures, these algorithm is
proved to succeed with high probability, as n tends to infinity. We state as the following theo-
rem:

Theorem 8 (Achievability of Learning-base Non-adaptive Histogram Query) .

P {Algorithm2 successfully recover the data } → 1, as n→∞.

In other words, the query complexity of histogram query is O (d) .

Proof. The proof is very similar to the proof of ordinary histogram query problem, and is ommited
here.

Remark 9 Theorem 8 guarantees that as n large enough, there will exists one (and only one)
hypothesis h∗ ∈ H consistent with all side information x and all the queried output z = Qd · y,
and therefore d randomly generated queries are enough to decode the entire dataset.
However, though we proved that d’s queries are sufficient to uniquely determine the hypothesis h∗,
we did not give a computational efficient algorithm to find the exact h∗. Therefore the VC dimension
d is the information-theoretic bound but not the computational bound.
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