Concentration Inequalities

Wei-Ning Chen

April 11, 2018

Outline

1 Recap: Markov's Inequality, Chernoff's Bound
2 Sub-Gaussian and Sub-Exponential Random Variables

- Sub-Gaussian R.V.s and Hoeffding's Inequality
- Sub-Exponential R.V.s and Bernstein's Inequality

3 Martingale Inequalities

- Introduction to Martingale
- Azuma-Hoeffding Inequality
- Bounded Differences Inequality

Bounds on Independent Random Variables

In this section, we will introduce sub-Gaussian and sub-exponential random variables.

■ sub-Gaussian property implies Hoeffding type inequalities

■ sub-exponential property implies Bernstein type inequalities

■ All these properties hold for bounded random variables

Markov's Inequality

Theorem (Markov's Inequality)

Let X be non-negative random variable. Then for all $t>0$

$$
\mathbb{P}\{X \geq t\} \leq \frac{\mathbb{E} X}{t}
$$

EX. Plugging-in $\tilde{X}=(X-\mathbb{E} X)^{2}$, we obtain Chebyshev's inequality.

Chernoff's Bound

Theorem (Chernoff's Bound)

Let $\mathbb{E} X=\mu$. For any $\lambda \geq 0$,

$$
\mathbb{P}\{(X-\mu) \geq t\} \leq \frac{\mathbb{E}\left[e^{\lambda(X-\mu)}\right]}{e^{\lambda t}}
$$

Equivalently,

$$
\log \mathbb{P}\{(X-\mu) \geq t\} \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]\right\}
$$

Proof.
Apply Markov's inequality on $Y=e^{\lambda(X-\mu)}$ (given that $\mathbb{E}\left[e^{\lambda(X-\mu)}\right]$ exists).

Chernoff's Bound

Example (Gaussian Tail Bounds)

Let $X \sim N(\mu, \sigma)$ be a Gaussian random variable with mean μ and variance σ^{2}. By a straightforward calculation, we find that X has the MGF

$$
\mathbb{E}\left[e^{\lambda(X-\mu)}\right]=e^{\sigma^{2} \lambda^{2} / 2}, \forall \lambda \in \mathbb{R} .
$$

Therefore, plugging into Chernoff's Bound, we obtain

$$
\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]\right\}=\sup _{\lambda \geq 0}\left\{\lambda t-\frac{\lambda^{2} \sigma^{2}}{2}\right\}=\frac{t^{2}}{2 \sigma^{2}}
$$

We conclude that

$$
\mathbb{P}\{(X-\mu) \geq t\} \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}, \forall t \geq 0
$$

Chernoff's Bound

■ For general random variable X, we want a similar tail bound:

$$
\mathbb{P}\{X-\mu \geq t\} \leq e^{-c t^{2}}
$$

■ It suffices to upper bound $\mathbb{E}\left[e^{\lambda(x-\mu)}\right]$

$$
\left(\text { Recall: } \log \mathbb{P}\{(X-\mu) \geq t\} \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]\right\} .\right)
$$

Sub-Gaussian R.V.s

Definition

A random variable X with mean $\mu=\mathbb{E}[X]$ is sub-Gaussian if there is a positive number σ such that

$$
\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\sigma^{2} \lambda^{2} / 2}, \text { for all } \lambda
$$

EX. $X \sim N(\mu, \sigma)$ is sub-Gaussian σ^{2}.

Sub-Gaussian R.V.s

Example (Bounded Random Variables)

Let X be zero-mean, and bounded on some interval $[a, b]$.
$\mathbb{E}\left[e^{\lambda X}\right] \leq \mathbb{E}\left[\frac{1+X /(b-a)}{2} e^{\lambda(b-a)}+\frac{1-X /(b-a)}{2} e^{-\lambda(b-a)}\right]=\frac{1}{2} e^{\lambda(b-a)}+\frac{1}{2} e^{-\lambda(b-a)}$.
By Taylor expansion, we can show that

$$
\frac{1}{2} e^{\lambda(b-a)}+\frac{1}{2} e^{-\lambda(b-a)} \leq e^{\frac{\lambda^{2}(b-a)^{2}}{2}},
$$

which implies X is sub-Gaussian with parameter $\sigma=(b-a)$.

Sub-Gaussian R.V.s

Example (Bounded Random Variables (cont'd))

Note that with more carefully analysis, for example, Hoeffding's lemma (Lemma 12 in Lecture 02), we have

$$
\mathbb{E}\left[e^{\lambda x}\right] \leq \exp \left((b-a)^{2} \lambda^{2} / 8\right)
$$

Hence X is actually sub-Gaussian with parameter $\sigma=\frac{(b-a)}{2}$.

Sub-Gaussian R.V.s

Theorem (Sub-Gaussian Tail Bound)

Let X be a s sub-Gaussian with parameter σ. Then

$$
\mathbb{P}\{|X-\mu| \geq t\} \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}}}, \forall t>0
$$

Proof.

$$
\begin{aligned}
\log \mathbb{P}\{(X-\mu) \geq t\} & \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]\right\} \\
& \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\sigma^{2} \lambda^{2} / 2\right\}=-t^{2} / 2 \sigma^{2}
\end{aligned}
$$

On the other hand, $-(X-\mu)$ also sub-Gaussian, so $\log \mathbb{P}\{-(X-\mu) \geq t\} \leq-t^{2} / 2 \sigma^{2}$.

Sub-Gaussian R.V.s

Proposition (Hoeffding Bound)

Suppose that the variables $X_{i}, i=1, \ldots, n$ are independent, and X_{i} has mean μ_{i} and sub-Gaussian parameter σ_{i}. Then for all $t \geq 0$, we have

$$
\mathbb{P}\left[\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right) .
$$

Equivalently,

$$
\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq \epsilon\right] \leq \exp \left(-\frac{n^{2} \epsilon^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right) .
$$

Proof sketch: it suffices to bound the MGF.

$$
\mathbb{E}\left[e^{\lambda \sum\left(X_{i}-\mu_{i}\right)}\right]=\prod_{i} \mathbb{E}\left[e^{\lambda\left(X_{i}-\mu_{i}\right)}\right] \leq e^{\lambda^{2} \sum_{i} \sigma_{i}^{2}} .
$$

Sub-Exponential Variables

Definition

A random variable X with mean $\mu=\mathbb{E}[X]$ is sub-Exponential if there are non-negative parameters (ν, \boldsymbol{b}) such that

$$
\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\frac{\nu^{2} \lambda^{2}}{2}}, \text { for all }|\lambda|<\frac{1}{b} .
$$

Remark : It follows immediately that any sub-Gaussian variable is also sub-exponential.

Sub-Exponential Variables

Example

Let $Z \sim N(0,1)$ and $X=Z^{2}$. Then

$$
\mathbb{E}\left[e^{\lambda(X-1)}\right]=\frac{1}{\sqrt{2 \pi}} \int e^{\lambda\left(z^{2}-1\right)} e^{-z^{2} / 2} d z=\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}}
$$

Following some calculus, it can be verified that

$$
\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}} \leq e^{4 \lambda^{2} / 2}, \text { for }|\lambda| \leq \frac{1}{4}
$$

and hence X is sub-exponential with parameters with parameter $(\nu, b)=(2,4)$.

Sub-Exponential Tail Bound

Theorem (Sub-Exponential Tail Bound)

Suppose that X is sub-exponential with parameters (ν, b). Then

$$
\mathbb{P}\{X-\mu \geq t\} \leq \begin{cases}e^{-\frac{t^{2}}{2 \nu^{2}}}, & \text { if } 0 \leq t \leq \frac{\nu^{2}}{b} \\ e^{-\frac{t}{2 b}}, & \text { for } t>\frac{\nu^{2}}{b}\end{cases}
$$

Moreover, the following bound also holds:

$$
\mathbb{P}\{X-\mu \geq t\} \leq e^{-\frac{t^{2}}{2\left(b t+\nu^{2}\right)}}, \text { for all } t \text {. }
$$

Remark: We can apply the same trick to obtain two-sided bound.

Sub-Exponential Tail Bound

Proof.
From Chernoff's bound, we have

$$
\begin{align*}
\log \mathbb{P}\{(X-\mu) \geq t\} & \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]\right\} \\
& \leq-\sup _{\lambda<1 / b}\left\{\lambda t-\lambda^{2} \nu^{2} / 2\right\}
\end{align*}
$$

1 If $0 \leq t \leq \frac{\nu^{2}}{b}$, choose $\lambda=\frac{t}{\nu^{2}}\left(\leq \frac{1}{b}\right)$, then $(\star) \leq-\frac{t^{2}}{2 \nu^{2}}$.
2 If $t \geq \frac{\nu^{2}}{b}$, choose $\lambda=\frac{1}{b}$, and $(\star) \leq-\frac{1}{b}+\frac{1}{2 b} \frac{\nu^{2}}{2 b} \leq-\frac{t}{2 b}\left(\because \frac{\nu^{2}}{2 b} \leq t\right)$.
3 Specially, choose $\lambda=\frac{t}{b t+\nu^{2}},(\star) \leq-\frac{t^{2}}{2\left(b t+\nu^{2}\right)}$

Bernstein's Condition

Definition (Bernstein's Condition)

Given a random variable X with mean $\mu=\mathbb{E}[X]$, variance $\sigma=\mathbb{E}\left[X^{2}-\mu^{2}\right]$, we say that Bernstein's condition with parameter b holds if

$$
\left|\mathbb{E}\left[(X-\mu)^{k}\right]\right| \leq \frac{1}{2} k!\sigma^{2} b^{k-2}, \text { for all } k=3,4, \ldots
$$

Theorem (Bernstein's Inequality)
For any random variable X satisfying the Bernstein condition, we have
$\square \mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\left(\frac{\lambda^{2} \sigma^{2} / 2}{1-b|\lambda|}\right)}$

- X is sub-exponential with parameters $(\sqrt{2} \sigma, 2 b)$
$\square \mathbb{P}\{|X-\mu| \geq t\} \leq 2 e^{-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}}$

Bernstein's Condition

Proof.
(1) If X satisfies Bernstein's condition, then

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda(X-\mu)}\right] & =1+\frac{\lambda^{2} \sigma^{2}}{2}+\sum_{k=3}^{\infty} \lambda^{k} \frac{\mathbb{E}(X-\mu)^{k}}{k!} \stackrel{(i)}{\leq} 1+\frac{\lambda^{2} \sigma^{2}}{2}+\frac{\lambda^{2} \sigma^{2}}{2} \sum_{k=3}^{\infty}(|\lambda| b)^{k-2} \\
& (i i) \\
& 1+\frac{\lambda^{2} \sigma^{2} / 2}{1-b|\lambda|} \leq e^{\left(\frac{\lambda^{2} \sigma^{2} / 2}{1-b|\lambda|}\right)} .
\end{aligned}
$$

(2) Hence, when $|\lambda| \leq \frac{1}{2 b}, \mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{-\frac{\lambda^{2}(\sqrt{2} \sigma)^{2}}{2}}$.
(3) Choosing $\lambda=\frac{t}{b t+\sigma^{2}} \in\left[0, \frac{1}{b}\right.$) and apply by (1) with Chernoff's bound.

Bernstein's Condition

Proposition

Let $X_{k}, k=1, \ldots, n$ are independent sub-exponential random variables, with parameter $\left(\nu_{k}, b_{k}\right)$. Then $\sum_{k}\left(X_{k}-\mu_{k}\right)$ is sub-exponential with the parameter $\left(\nu_{\star}, b_{\star}\right)$, with

$$
\left(\nu_{\star}, b_{\star}\right) \triangleq\left(\sqrt{\sum_{k} \nu_{k}^{2} / n}, \max _{k} b_{k}\right)
$$

Moreover, we have

$$
\mathbb{P}\left\{\frac{1}{n} \sum_{k}\left(X_{k}-\mu_{k}\right) \geq t\right\} \leq\left\{\begin{array}{l}
e^{-\frac{n n^{2}}{2 \nu_{\star}^{2}}}, \text { for } 0 \leq t \leq \frac{\nu_{\star}}{b_{\star}} \\
e^{-\frac{n t}{2 b_{\star}^{2}}}, \text { for } t \geq \frac{\nu_{\star}}{b_{\star}}
\end{array}\right.
$$

Summary

(1) sub-Gaussian random variable with parameter σ_{i} :
\square Tail Bound : $\mathbb{P}\{|X-\mu| \geq t\} \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)$, for all $t>0$.
■ Independent Sum : $\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq \epsilon\right] \leq \exp \left(-\frac{n^{2} \epsilon^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right)$.
(2) sub-exponential random variable with parameter $\left(\nu_{i}, b_{i}\right)$:
\square Tail Bound : $\mathbb{P}\{|X-\mu| \geq t\} \leq 2 \exp \left(-\frac{t^{2}}{2\left(b t+\nu^{2}\right)}\right)$, for all $t>0$.
\square Independent Sum: $\mathbb{P}\left\{\frac{1}{n} \sum_{k}\left(X_{k}-\mu_{k}\right) \geq \epsilon\right\} \leq \exp \left(-\frac{n^{2} \epsilon^{2}}{2\left(n b_{\star} \epsilon+\nu_{\star}^{2}\right)}\right)$
■ Bernstein's condition : relates (ν, b) with variance and support

■ Up to now, we see various types of bounds on sums of independent random variables

■ Many problems require bounds on more general functions of random variables

■ One classical approach is based on martingale decompositions

Recap: Conditional Expectation

■ The conditional expectation $\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k}\right]$ is a function of $\left(X_{1}, \ldots, X_{k}\right)$

$$
\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k}\right]=\int g\left(X_{1}, \ldots, x_{k}, x_{k+1}, \ldots x_{n}\right) d P\left(x_{k+1}, \ldots, x_{n} \mid X_{1}, \ldots, X_{k}\right)
$$

- The conditional expectation $\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k}\right]$ is an orthogonal projection of $g(\cdot)$ to the functional space spanned by $\left(X_{1}, \ldots, X_{k}\right)$.
\square We use the notation \mathcal{F}_{k} to denote the space spanned by $\left(X_{1}, \ldots, X_{k}\right)$, i.e.

$$
\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right] \triangleq \mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k}\right] .
$$

(Rigorously speaking , $\mathcal{F}_{k} \triangleq \sigma\left(X_{1}, \ldots, X_{k}\right)$)

Recap: Conditional Expectation

Properties of Conditional Expectation

- Pulling out known factors :

$$
\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k}\right) f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right]=g\left(X_{1}, \ldots, X_{k}\right) \mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right]
$$

- Law of total expectation:

$$
\mathbb{E}\left(\mathbb{E}\left(g\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right)\right)=\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]
$$

■ Tower property: for any $k_{1} \leq k_{2}$, we have

$$
\left.\left.\mathbb{E}\left(\mathbb{E}\left(g\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k_{2}}\right) \mid \mathcal{F}_{k_{1}}\right)\right)=\mathbb{E}\left(g\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k_{1}}\right)\right)
$$

Remark: we have $\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \mathcal{F}_{3} \subseteq \ldots \subseteq \mathcal{F}_{n}$

Definition (Martingale)

Given a sequence of random variables $\left\{Y_{k}\right\}_{k=1}^{\infty}$, we say $\left\{Y_{k}\right\}$ is a martingale with respect to $\left\{X_{k}\right\}$, if

$$
\mathbb{E}\left[\left|Y_{k}\right|\right]<\infty, \text { and } \mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]=Y_{k-1}
$$

(That is, $\mathbb{E}\left[Y_{k} \mid X_{1}, \ldots, X_{k-1}\right]=Y_{k-1}$)

Example (Random Walk)

Let S_{n} be the one-dimensional random walk. That is,

$$
S_{n}=\sum_{i=1}^{n} w_{i},
$$

where W_{i} takes values in $\{+1,-1\}$ with probability $1 / 2$ independently.
Then we have

$$
\mathbb{E}\left[S_{k} \mid W_{1}, \ldots, W_{k-1}\right]=\sum_{i=1}^{k-1} W_{i}+\mathbb{E}\left[W_{k} \mid W_{1}, \ldots, W_{k-1}\right]=S_{k-1} .
$$

Martingale

Example (Dependent Increment Martingale)

Let $a>0$, and W_{i} takes values in $\{+1,-1\}$ with probability $\frac{1}{a+1}, \frac{a}{a+1}$ independently, and let $S_{k}=\sum_{i=1}^{k} W_{i}$. Then the process $X_{k}=a^{S_{k}}$ is a martingale:

Check:

$$
\begin{aligned}
\mathbb{E}\left[X_{k} \mid \mathcal{F}_{k-1}\right] & =\mathbb{E}\left[a^{S_{k}} \mid \mathcal{F}_{k-1}\right]=a^{S_{k-1}} \mathbb{E}\left[a^{W_{k}} \mid \mathcal{F}_{k-1}\right] \\
& =a^{S_{k-1}}\left(a p+\frac{1}{a}(1-p)\right)=X_{k-1}
\end{aligned}
$$

Doob's Construction

In general, we can construct a martingale by conditioning:

Definition (Doob's Martingale)

Let $f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function. Then

$$
Y_{k} \triangleq \mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right] \text { is a martingale. }
$$

Note that we have

$$
\begin{aligned}
\mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right] & =\mathbb{E}\left(\mathbb{E}\left(f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right) \mid \mathcal{F}_{k-1}\right) \\
& =\mathbb{E}\left(f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k-1}\right)=Y_{k-1}
\end{aligned}
$$

Doob's Martingale

According to Doob's martingale, $f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]$ can be decomposed into sum of martingale difference:

$$
f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{k=1}^{n}\left(Y_{k}-Y_{k-1}\right)
$$

with $Y_{k} \triangleq \mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{k}\right]$. Note that we have

$$
Y_{n}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{F}_{n}\right]=f\left(X_{1}, \ldots, X_{n}\right), \text { and } Y_{0}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]
$$

This motivates us to study the concentration inequalities on sum of martingale difference sequence.

Martingale Difference Sequence

Definition (Martingale Difference)

A sequence of random variable $\left\{D_{k}\right\}$ is a martingale difference with respect to $\left\{\mathcal{F}_{k}\right\}$, if

$$
\mathbb{E}\left[\left|D_{k}\right|\right]<\infty \text { and } \mathbb{E}\left[D_{k} \mid \mathcal{F}_{k-1}\right]=0 .
$$

Remark: If $Y_{k}=\sum_{i=1}^{k} D_{k}+Y_{0}\left(\Leftrightarrow D_{k}=Y_{k}-Y_{k-1}\right)$, then Y_{k} is a martingale. Also,

$$
Y_{n}-Y_{0}=\sum_{k=1}^{n} D_{k} .
$$

Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding)

Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}$ be a martingale difference sequence, and suppose that $\left|D_{k}\right| \leq b_{k}$ almost surely for all $k \geq 1$. Then for all $t \geq 0$,

$$
\mathbb{P}\left\{\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right\} \leq 2 e^{-\frac{2 t^{2}}{\sum_{k=1}^{\frac{b_{k}^{2}}{2}}}}
$$

Proof.
By Chernoff's bound, we have

$$
\log \mathbb{P}\left\{\sum_{k=1}^{n} D_{k} \geq t\right\} \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n} D_{k}\right)}\right]\right\}
$$

It suffices to show that $\log \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n} D_{k}\right)}\right] \leq \frac{\lambda^{2} \sum_{k} b_{k}^{2}}{8}$.

Azuma-Hoeffding Inequality

Proof. (cont'd)
Notice that from the property of martingale, we have

$$
\begin{align*}
\mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n} D_{k}\right)}\right] & =\mathbb{E}\left[\mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n-1} D_{k}\right)} e^{\lambda D_{n}} \mid \mathcal{F}_{n-1}\right]\right] \\
& =\mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n-1} D_{k}\right)} \mathbb{E}\left[e^{\lambda D_{n}} \mid \mathcal{F}_{n-1}\right]\right]
\end{align*}
$$

Our goal is to show that $\mathbb{E}\left[e^{\lambda D_{n}} \mid \mathcal{F}_{n-1}\right] \leq e^{\lambda^{2} b_{k}^{2} / 8}$ almost surely.
By the convexity, we have

$$
e^{\lambda D_{n}} \leq \frac{1+D_{n} / b_{n}}{2} e^{\lambda b_{n}}+\frac{1-D_{n} / b_{n}}{2} e^{-\lambda b_{n}}
$$

and hence

$$
\mathbb{E}\left[e^{\lambda D_{n}} \mid \mathcal{F}_{n}\right] \leq \mathbb{E}\left[\left.\frac{1+D_{n} / b_{n}}{2} e^{\lambda b_{n}}+\frac{1-D_{n} / b_{n}}{2} e^{-\lambda b_{n}} \right\rvert\, \mathcal{F}_{n}\right]=\frac{1}{2} e^{\lambda b_{n}}+\frac{1}{2} e^{-\lambda b_{n}}
$$

Proof. (cont'd)
Notice that by Taylor expansion, we can show that

$$
\frac{1}{2} e^{\lambda b_{n}}+\frac{1}{2} e^{-\lambda b_{n}} \leq e^{\frac{\lambda^{2} b_{n}^{2}}{2}}
$$

(the constant can be improved by carefully apply Jensen's inequality).
Iteratively,

$$
(\star) \leq \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n-1} D_{k}\right)}\right] e^{\lambda^{2} b_{n}^{2} / 8} \leq \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n-2} D_{k}\right)}\right] e^{\lambda^{2} b_{n}^{2} / 8} e^{\lambda^{2} b_{n-1}^{2} / 8} \leq \ldots \leq e^{\frac{\lambda^{2} \sum_{k} b_{k}^{2}}{8}},
$$

with probability 1.
Therefore, from the Chernoff's bound

$$
\begin{aligned}
\log \mathbb{P}\left\{\sum_{k=1}^{n} D_{k} \geq t\right\} & \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\log \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^{n} D_{k}\right)}\right]\right\} \\
& \leq-\sup _{\lambda \geq 0}\left\{\lambda t-\frac{\lambda^{2} \sum_{k} b_{k}^{2}}{8}\right\} .
\end{aligned}
$$

Choosing the optimal λ, the proof is complete.

Bounded Differences Inequality

We say that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the bounded difference property with parameters $\left(L_{1}, \ldots, L_{n}\right)$, if for each $k=1,2, \ldots, n$,

$$
\left|f\left(x_{1}, \ldots, x_{k-1}, x_{k}, x_{k+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{k-1}, x_{k}^{\prime}, x_{k+1}, \ldots, x_{n}\right)\right| \leq L_{k}, \forall x_{k}, x_{k}^{\prime}
$$

Theorem (Bounded differences inequality)

Suppose that f satisfies the bounded difference property and that the random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has independent components. Then

$$
\mathbb{P}\left\{\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right\} \leq 2 e^{-\frac{2 t^{2}}{\sum_{k=1}^{n} L_{k}^{2}}}, \text { for all } t \geq 0
$$

Remark: In Doob's martingale, X_{1}, \ldots, X_{n} don't have to be independent!

Bounded Differences Inequality

Proof.
Recalling the Doob's martingale, and according to Azuma's inequality, it suffices to show that the difference is bounded almost surely:

$$
D_{k}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k}\right]-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k-1}\right] .
$$

Define the function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ as $g\left(x_{1}, \ldots, x_{k}\right) \triangleq \mathbb{E}\left[f\left(X_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{k}\right]$, then we have

$$
D_{k}=g\left(X_{1}, \ldots, X_{k}\right)-\mathbb{E}_{X_{k}}\left[g\left(X_{1}, \ldots, X_{k-1}, X_{k}^{\prime}\right)\right] .
$$

check:

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{k-1}\right] & =\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}, \ldots, X_{k-1}\right] \\
& =\int g\left(X_{1}, \ldots, X_{k-1}, x_{k}\right) d P\left(x_{k} \mid X_{1}, \ldots, X_{k}\right)
\end{aligned}
$$

$(\because$ independence assumption ! $)=\int g\left(X_{1}, \ldots, X_{k-1}, x_{k}\right) d P\left(x_{k}\right)=\mathbb{E}_{X_{k}}\left[g\left(X_{1}, \ldots, X_{k-1}, X_{k}^{\prime}\right)\right]$

Bounded Differences Inequality

Proof (cont'd)
Therefore,

$$
D_{k}=g\left(X_{1}, \ldots, X_{k}\right)-\mathbb{E}_{X_{k}^{\prime}}\left[g\left(X_{1}, \ldots, X_{k-1}, X_{k}^{\prime}\right)\right]=\mathbb{E}_{X_{k}^{\prime}}\left[g\left(X_{1}, \ldots, X_{k}\right)-g\left(X_{1}, \ldots, X_{k}^{\prime}\right)\right]
$$

Notice that we have

$$
\begin{aligned}
\left|g\left(x_{1}, \ldots, x_{k}\right)-g\left(x_{1}, \ldots, x_{k}\right)\right| & =\left|\mathbb{E}_{X_{k+1}^{n}}\left[f\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{k}^{\prime}, X_{k+1}, \ldots, X_{n}\right)\right]\right| \\
& \leq L_{k},
\end{aligned}
$$

showing $\left|D_{k}\right| \leq L_{k}$ almost surely, and hence establish the theorem.

