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Bounds on Independent Random Variables

In this section, we will introduce sub-Gaussian and sub-exponential random variables.

� sub-Gaussian property implies Hoeffding type inequalities

� sub-exponential property implies Bernstein type inequalities

� All these properties hold for bounded random variables

Wei-Ning Chen Concentration Inequalities April 11, 2018 3 / 34



Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be non-negative random variable. Then for all t > 0

P {X ≥ t} ≤ EX
t
.

EX. Plugging-in X̃ = (X − EX )2, we obtain Chebyshev’s inequality.
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Chernoff’s Bound

Theorem (Chernoff’s Bound)

Let EX = µ. For any λ ≥ 0,

P {(X − µ) ≥ t} ≤
E
[
eλ(X−µ)

]
eλt .

Equivalently,
logP {(X − µ) ≥ t} ≤ − sup

λ≥0

{
λt − logE

[
eλ(X−µ)

]}
.

Proof.
Apply Markov’s inequality on Y = eλ(X−µ) ( given that E

[
eλ(X−µ)

]
exists) .
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Chernoff’s Bound

Example (Gaussian Tail Bounds)

Let X ∼ N(µ, σ) be a Gaussian random variable with mean µ and variance σ2. By a
straightforward calculation, we find that X has the MGF

E
[
eλ(X−µ)

]
= eσ

2λ2/2, ∀λ ∈ R.

Therefore, plugging into Chernoff’s Bound, we obtain

sup
λ≥0

{
λt − logE

[
eλ(X−µ)

]}
= sup

λ≥0

{
λt − λ2σ2

2

}
=

t2

2σ2 .

We conclude that
P {(X − µ) ≥ t} ≤ e−

t2

2σ2 , ∀t ≥ 0.
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Chernoff’s Bound

� For general random variable X , we want a similar tail bound:

P {X − µ ≥ t} ≤ e−ct2

� It suffices to upper bound E
[
eλ(X−µ)

]
(

Recall: logP {(X − µ) ≥ t} ≤ − sup
λ≥0

{
λt − logE

[
eλ(X−µ)

]}
.

)
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Sub-Gaussian R.V.s

Definition
A random variable X with mean µ = E[X ] is sub-Gaussian if there is a positive number σ
such that

E[eλ(X−µ)] ≤ eσ
2λ2/2, for all λ.

EX. X ∼ N(µ, σ) is sub-Gaussian σ2.
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Sub-Gaussian R.V.s

Example (Bounded Random Variables)

Let X be zero-mean, and bounded on some interval [a,b].

E
[
eλX

]
≤ E

[
1 + X/(b − a)

2
eλ(b−a) +

1− X/(b − a)
2

e−λ(b−a)
]
=

1
2

eλ(b−a) +
1
2

e−λ(b−a).

By Taylor expansion, we can show that

1
2

eλ(b−a) +
1
2

e−λ(b−a) ≤ e
λ2(b−a)2

2 ,

which implies X is sub-Gaussian with parameter σ = (b − a).
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Sub-Gaussian R.V.s

Example (Bounded Random Variables (cont’d))

Note that with more carefully analysis, for example, Hoeffding’s lemma (Lemma 12 in
Lecture 02), we have

E[eλX ] ≤ exp
(
(b − a)2λ2/8

)
.

Hence X is actually sub-Gaussian with parameter σ =
(b − a)

2
.
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Sub-Gaussian R.V.s

Theorem (Sub-Gaussian Tail Bound)

Let X be a s sub-Gaussian with parameter σ. Then

P {|X − µ| ≥ t} ≤ 2e−
t2

2σ2 , ∀t > 0.

Proof.

logP {(X − µ) ≥ t} ≤ − sup
λ≥0

{
λt − logE

[
eλ(X−µ)

]}
≤ − sup

λ≥0

{
λt − σ2λ2/2

}
= −t2/2σ2.

On the other hand, −(X − µ) also sub-Gaussian, so logP {−(X − µ) ≥ t} ≤ −t2/2σ2.
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Sub-Gaussian R.V.s

Proposition (Hoeffding Bound)

Suppose that the variables Xi , i = 1, ...,n are independent, and Xi has mean µi and
sub-Gaussian parameter σi . Then for all t ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Equivalently,

P

[
1
n

n∑
i=1

(Xi − µi) ≥ ε

]
≤ exp

(
− n2ε2

2
∑n

i=1 σ
2
i

)
.

Proof sketch: it suffices to bound the MGF.

E[eλ
∑

(Xi−µi )] =
∏

i
E[eλ(Xi−µi )] ≤ e

λ2 ∑
i σ

2
i

2 .
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Sub-Exponential Variables

Definition
A random variable X with mean µ = E[X ] is sub-Exponential if there are non-negative
parameters (ν,b) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 , for all |λ| < 1
b
.

Remark : It follows immediately that any sub-Gaussian variable is also sub-exponential.
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Sub-Exponential Variables

Example

Let Z ∼ N(0,1) and X = Z 2. Then

E[eλ(X−1)] =
1√
2π

∫
eλ(z

2−1)e−z2/2dz =
e−λ√
1− 2λ

.

Following some calculus, it can be verified that

e−λ√
1− 2λ

≤ e4λ2/2, for |λ| ≤ 1
4
,

and hence X is sub-exponential with parameters with parameter (ν,b) = (2,4).
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Sub-Exponential Tail Bound

Theorem (Sub-Exponential Tail Bound)

Suppose that X is sub-exponential with parameters (ν,b). Then

P {X − µ ≥ t} ≤


e−

t2

2ν2 , if 0 ≤ t ≤ ν2

b

e−
t

2b , for t >
ν2

b

Moreover, the following bound also holds:

P {X − µ ≥ t} ≤ e
− t2

2(bt+ν2) , for all t .

Remark: We can apply the same trick to obtain two-sided bound.
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Sub-Exponential Tail Bound

Proof.
From Chernoff’s bound, we have

logP {(X − µ) ≥ t} ≤ − sup
λ≥0

{
λt − logE

[
eλ(X−µ)

]}
≤ − sup

λ<1/b

{
λt − λ2ν2/2

}
(?)

1 If 0 ≤ t ≤ ν2

b
, choose λ =

t
ν2 (≤

1
b
), then (?) ≤ − t2

2ν2 .

2 If t ≥ ν2

b
, choose λ =

1
b

, and (?) ≤ −1
b
+

1
2b

ν2

2b
≤ − t

2b
( ∵

ν2

2b
≤ t).

3 Specially, choose λ =
t

bt + ν2 , (?) ≤ − t2

2(bt + ν2)
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Bernstein’s Condition

Definition (Bernstein’s Condition)

Given a random variable X with mean µ = E[X ], variance σ = E[X 2 − µ2], we say that
Bernstein’s condition with parameter b holds if∣∣∣E[(X − µ)k ]

∣∣∣ ≤ 1
2

k !σ2bk−2, for all k = 3,4, ...

Theorem (Bernstein’s Inequality)

For any random variable X satisfying the Bernstein condition, we have

� E[eλ(X−µ)] ≤ e

(
λ2σ2/2
1−b|λ|

)
� X is sub-exponential with parameters (

√
2σ, 2b)

� P{|X − µ| ≥ t} ≤ 2e
− t2

2(σ2+bt)
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Bernstein’s Condition

Proof.
(1) If X satisfies Bernstein’s condition, then

E[eλ(X−µ)] = 1 +
λ2σ2

2
+
∞∑

k=3

λk E(X − µ)k

k !

(i)
≤ 1 +

λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2

(ii)
≤ 1 +

λ2σ2/2
1− b|λ|

≤ e

(
λ2σ2/2
1−b|λ|

)
.

(2) Hence, when |λ| ≤ 1
2b

, E[eλ(X−µ)] ≤ e−
λ2(
√

2σ)2

2 .

(3) Choosing λ =
t

bt + σ2 ∈ [0,
1
b
) and apply by (1) with Chernoff’s bound.
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Bernstein’s Condition

Proposition

Let Xk , k = 1, ...,n are independent sub-exponential random variables, with parameter
(νk ,bk ). Then

∑
k

(Xk − µk ) is sub-exponential with the parameter (ν?,b?), with

(ν?,b?) , (

√∑
k

ν2
k /n,max

k
bk ).

Moreover, we have

P

{
1
n

∑
k

(Xk − µk ) ≥ t

}
≤


e
− nt2

2ν2
? , for 0 ≤ t ≤ ν?

b?
e
− nt

2b2
? , for t ≥ ν?

b?

Wei-Ning Chen Concentration Inequalities April 11, 2018 19 / 34



Summary

(1) sub-Gaussian random variable with parameter σi :

� Tail Bound : P {|X − µ| ≥ t} ≤ 2 exp
(
− t2

2σ2

)
, for all t > 0.

� Independent Sum : P

[
1
n

n∑
i=1

(Xi − µi) ≥ ε

]
≤ exp

(
− n2ε2

2
∑n

i=1 σ
2
i

)
.

(2) sub-exponential random variable with parameter (νi ,bi):

� Tail Bound : P {|X − µ| ≥ t} ≤ 2 exp
(
− t2

2(bt + ν2)

)
, for all t > 0.

� Independent Sum: P

{
1
n

∑
k

(Xk − µk ) ≥ ε

}
≤ exp

(
− n2ε2

2(nb?ε+ ν2
? )

)
� Bernstein’s condition : relates (ν,b) with variance and support
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� Up to now, we see various types of bounds on sums of independent random variables

� Many problems require bounds on more general functions of random variables

� One classical approach is based on martingale decompositions
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Recap: Conditional Expectation

� The conditional expectation E[g(X1, ...,Xn)|X1, ...,Xk ] is a function of (X1, ...,Xk )

E[g(X1, ...,Xn)|X1, ...,Xk ] =

∫
g(X1, ...,Xk , xk+1, ...xn)dP(xk+1, ..., xn|X1, ...,Xk ).

� The conditional expectation E[g(X1, ...,Xn)|X1, ...,Xk ] is an orthogonal projection of
g(·) to the functional space spanned by (X1, ...,Xk ).

� We use the notation Fk to denote the space spanned by (X1, ...,Xk ), i.e.

E[g(X1, ...,Xn)|Fk ] , E[g(X1, ...,Xn)|X1, ...,Xk ].

(Rigorously speaking , Fk , σ(X1, ...,Xk ))
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Recap: Conditional Expectation

Properties of Conditional Expectation
� Pulling out known factors :

E[g(X1, ...,Xk )f (X1, ...,Xn)|Fk ] = g(X1, ...,Xk )E[f (X1, ...,Xn)|Fk ].

� Law of total expectation :

E (E(g(X1, ...,Xn)|Fk )) = E[g(X1, ...,Xn)]

� Tower property : for any k1 ≤ k2, we have

E
(
E
(
g(X1, ...,Xn)|Fk2

)
|Fk1)

)
= E(g(X1, ...,Xn)|Fk1))

Remark: we have F1 ⊆ F2 ⊆ F3 ⊆ ... ⊆ Fn
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Definition (Martingale)

Given a sequence of random variables {Yk}∞k=1, we say {Yk} is a martingale with respect
to {Xk}, if

E[|Yk |] <∞, and E[Yk |Fk−1] = Yk−1

(That is, E[Yk |X1, ...,Xk−1] = Yk−1)

Example (Random Walk)

Let Sn be the one-dimensional random walk. That is,

Sn =
∑n

i=1
Wi ,

where Wi takes values in {+1,−1} with probability 1/2 independently.
Then we have

E[Sk |W1, ...,Wk−1] =
∑k−1

i=1
Wi + E[Wk |W1, ...,Wk−1] = Sk−1.
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Martingale

Example (Dependent Increment Martingale )

Let a > 0, and Wi takes values in {+1,−1} with probability
1

a + 1
,

a
a + 1

independently,

and let Sk =
∑k

i=1
Wi . Then the process Xk = aSk is a martingale:

Check:

E[Xk |Fk−1] = E[aSk |Fk−1] = aSk−1E[aWk |Fk−1]

= aSk−1

(
ap +

1
a
(1− p)

)
= Xk−1.
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Doob’s Construction

In general, we can construct a martingale by conditioning:

Definition (Doob’s Martingale)

Let f (·) : Rn → R be a measurable function. Then

Yk , E[f (X1, ...,Xn)|Fk ] is a martingale.

Note that we have

E[Yk |Fk−1] = E (E (f (X1, ...,Xn)|Fk ) |Fk−1)

= E (f (X1, ...,Xn)|Fk−1) = Yk−1.
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Doob’s Martingale

According to Doob’s martingale, f (X1, ...,Xn)− E[f (X1, ...,Xn)] can be decomposed into
sum of martingale difference:

f (X1, ...,Xn)− E[f (X1, ...,Xn)] =
n∑

k=1

(Yk − Yk−1),

with Yk , E[f (X1, ...,Xn)|Fk ]. Note that we have

Yn = E[f (X1, ...,Xn)|Fn] = f (X1, ...,Xn), and Y0 = E[f (X1, ...,Xn)].

This motivates us to study the concentration inequalities on sum of martingale difference
sequence.
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Martingale Difference Sequence

Definition (Martingale Difference)

A sequence of random variable {Dk} is a martingale difference with respect to {Fk}, if

E[|Dk |] <∞ and E[Dk |Fk−1] = 0.

Remark: If Yk =
k∑

i=1

Dk + Y0 (⇔ Dk = Yk − Yk−1), then Yk is a martingale. Also,

Yn − Y0 =
∑n

k=1
Dk .
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Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding)

Let {(Dk ,Fk )} be a martingale difference sequence, and suppose that |Dk | ≤ bk almost
surely for all k ≥ 1. Then for all t ≥ 0,

P

{∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣ ≥ t

}
≤ 2e

− 2t2∑n
k=1 b2

k .

Proof.
By Chernoff’s bound, we have

logP
{∑n

k=1
Dk ≥ t

}
≤ − sup

λ≥0

{
λt − logE

[
eλ(

∑n
k=1 Dk )

]}
.

It suffices to show that logE
[
eλ(

∑n
k=1 Dk )

]
≤
λ2∑

k b2
k

8
.
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Azuma-Hoeffding Inequality

Proof. (cont’d)
Notice that from the property of martingale, we have

E
[
eλ(

∑n
k=1 Dk )

]
= E

[
E
[
eλ(

∑n−1
k=1 Dk )eλDn |Fn−1

]]
= E

[
eλ(

∑n−1
k=1 Dk )E

[
eλDn |Fn−1

]]
(?)

Our goal is to show that E
[
eλDn |Fn−1

]
≤ eλ

2b2
k/8 almost surely.

By the convexity, we have

eλDn ≤ 1 + Dn/bn

2
eλbn +

1− Dn/bn

2
e−λbn ,

and hence

E
[
eλDn |Fn

]
≤ E

[
1 + Dn/bn

2
eλbn +

1− Dn/bn

2
e−λbn |Fn

]
=

1
2

eλbn +
1
2

e−λbn .
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Proof. (cont’d)

Notice that by Taylor expansion, we can show that
1
2

eλbn +
1
2

e−λbn ≤ e
λ2b2

n
2

(the constant can be improved by carefully apply Jensen’s inequality).
Iteratively,

(?) ≤ E
[
eλ(

∑n−1
k=1 Dk )

]
eλ

2b2
n/8 ≤ E

[
eλ(

∑n−2
k=1 Dk )

]
eλ

2b2
n/8eλ

2b2
n−1/8 ≤ ... ≤ e

λ2 ∑
k b2

k
8 ,

with probability 1.
Therefore, from the Chernoff’s bound

logP
{∑n

k=1
Dk ≥ t

}
≤ − sup

λ≥0

{
λt − logE

[
eλ(

∑n
k=1 Dk )

]}
≤ − sup

λ≥0

{
λt −

λ2∑
k b2

k
8

}
.

Choosing the optimal λ, the proof is complete.

Remark: one can use similar trick to derive the Bernstein-type inequality for MDS.
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Bounded Differences Inequality

We say that f : Rn → R satisfies the bounded difference property with parameters
(L1, ...,Ln), if for each k = 1,2, ...,n,

|f (x1, ..., xk−1, xk , xk+1, ..., xn)− f (x1, ..., xk−1, x ′k , xk+1, ..., xn)| ≤ Lk , ∀xk , x ′k .

Theorem (Bounded differences inequality)

Suppose that f satisfies the bounded difference property and that the random vector
(X1,X2, ...,Xn) has independent components. Then

P {|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| ≥ t} ≤ 2e
− 2t2∑n

k=1 L2
k , for all t ≥ 0.

Remark : In Doob’s martingale, X1, ...,Xn don’t have to be independent!
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Bounded Differences Inequality

Proof.
Recalling the Doob’s martingale, and according to Azuma’s inequality, it suffices to show
that the difference is bounded almost surely:

Dk = E[f (X1, ...,Xn)|X1, ...,Xk ]− E[f (X1, ...,Xn)|X1, ...,Xk−1].

Define the function g : Rk → R as g(x1, ..., xk ) , E[f (X1, ...,Xn)|x1, ..., xk ], then we have

Dk = g(X1, ...,Xk )− EX ′k
[g(X1, ...,Xk−1,X ′k )].

check:

E[f (X1, ...,Xn)|X1, ...,Xk−1] = E[g(X1, ...,Xk )|X1, ...,Xk−1]

=

∫
g(X1, ...,Xk−1, xk )dP(xk |X1, ...,Xk )

(∵ independence assumption !) =

∫
g(X1, ...,Xk−1, xk )dP(xk ) = EX ′k

[g(X1, ...,Xk−1,X ′k )]
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Bounded Differences Inequality

Proof (cont’d)

Therefore,

Dk = g(X1, ...,Xk )− EX ′k
[g(X1, ...,Xk−1,X ′k )] = EX ′k

[g(X1, ...,Xk )− g(X1, ...,X ′k )].

Notice that we have

|g(x1, ..., xk )− g(x1, ..., xk )| = |EX n
k+1

[f (x1, ..., xk ,Xk+1, ...,Xn)− f (x1, ..., x ′k ,Xk+1, ...,Xn)]|

≤ Lk ,

showing |Dk | ≤ Lk almost surely, and hence establish the theorem.
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