Concentration Inequalities

Wei-Ning Chen

April 11, 2018

Wei-Ning Chen

Outline

1 Recap: Markov's Inequality, Chernoff's Bound

- Sub-Gaussian and Sub-Exponential Random Variables
 Sub-Gaussian R.V.s and Hoeffding's Inequality
 - Sub-Exponential R.V.s and Bernstein's Inequality
- 3 Martingale Inequalities
 - Introduction to Martingale
 - Azuma-Hoeffding Inequality
 - Bounded Differences Inequality

Bounds on Independent Random Variables

In this section, we will introduce *sub-Gaussian* and *sub-exponential* random variables.

- sub-Gaussian property implies *Hoeffding* type inequalities
- sub-exponential property implies *Bernstein* type inequalities
- All these properties hold for bounded random variables

Theorem (Markov's Inequality)

Let X be non-negative random variable. Then for all t > 0

$$\mathbb{P}\left\{\boldsymbol{X} \geq t\right\} \leq \frac{\mathbb{E}\boldsymbol{X}}{t}.$$

EX. Plugging-in $\tilde{X} = (X - \mathbb{E}X)^2$, we obtain *Chebyshev's inequality*.

Chernoff's Bound

Theorem (Chernoff's Bound)

Let $\mathbb{E}X = \mu$. For any $\lambda \geq 0$,

$$\mathbb{P}\left\{ (\boldsymbol{X} - \mu) \geq t
ight\} \leq rac{\mathbb{E}\left[\boldsymbol{e}^{\lambda(\boldsymbol{X} - \mu)}
ight]}{\boldsymbol{e}^{\lambda t}}.$$

Equivalently,

$$\log \mathbb{P}\left\{ (X - \mu) \ge t \right\} \le - \sup_{\lambda \ge 0} \left\{ \lambda t - \log \mathbb{E}\left[e^{\lambda (X - \mu)} \right] \right\}.$$

Proof. Apply Markov's inequality on $Y = e^{\lambda(X-\mu)}$ (given that $\mathbb{E}\left[e^{\lambda(X-\mu)}\right]$ exists).

Chernoff's Bound

Example (Gaussian Tail Bounds)

Let $X \sim N(\mu, \sigma)$ be a Gaussian random variable with mean μ and variance σ^2 . By a straightforward calculation, we find that X has the MGF

$$\mathbb{E}\left[oldsymbol{e}^{\lambda(X-\mu)}
ight]=oldsymbol{e}^{\sigma^2\lambda^2/2},\,orall\lambda\in\mathbb{R}.$$

Therefore, plugging into Chernoff's Bound, we obtain

$$\sup_{\lambda \ge 0} \left\{ \lambda t - \log \mathbb{E} \left[e^{\lambda (X - \mu)} \right] \right\} = \sup_{\lambda \ge 0} \left\{ \lambda t - \frac{\lambda^2 \sigma^2}{2} \right\} = \frac{t^2}{2\sigma^2}.$$

We conclude that

$$\mathbb{P}\left\{(\boldsymbol{X}-\boldsymbol{\mu})\geq t\right\}\leq \boldsymbol{e}^{-\frac{t^2}{2\sigma^2}},\,\forall t\geq \boldsymbol{0}.$$

For general random variable *X*, we want a similar tail bound:

$$\mathbb{P}\left\{\boldsymbol{X}-\mu\geq t\right\}\leq\boldsymbol{e}^{-\boldsymbol{c}t^{2}}$$

It suffices to upper bound $\mathbb{E}\left[e^{\lambda(X-\mu)}\right]$

$$\left(\mathsf{Recall:} \log \mathbb{P}\left\{ (X - \mu) \geq t \right\} \leq - \sup_{\lambda \geq 0} \left\{ \lambda t - \log \mathbb{E}\left[e^{\lambda (X - \mu)} \right] \right\}. \right)$$

Definition

A random variable X with mean $\mu = \mathbb{E}[X]$ is sub-Gaussian if there is a positive number σ such that

$$\mathbb{E}[\boldsymbol{e}^{\lambda(\boldsymbol{X}-\boldsymbol{\mu})}] \leq \boldsymbol{e}^{\sigma^2 \lambda^2/2}, \text{ for all } \lambda.$$

EX. $X \sim N(\mu, \sigma)$ is sub-Gaussian σ^2 .

Example (Bounded Random Variables)

Let X be zero-mean, and bounded on some interval [a, b].

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \mathbb{E}\left[\frac{1+X/(b-a)}{2}e^{\lambda(b-a)} + \frac{1-X/(b-a)}{2}e^{-\lambda(b-a)}\right] = \frac{1}{2}e^{\lambda(b-a)} + \frac{1}{2}e^{-\lambda(b-a)}.$$

By Taylor expansion, we can show that

$$rac{1}{2} e^{\lambda(b-a)} + rac{1}{2} e^{-\lambda(b-a)} \leq e^{rac{\lambda^2(b-a)^2}{2}},$$

which implies X is sub-Gaussian with parameter $\sigma = (b - a)$.

Example (Bounded Random Variables (cont'd))

Note that with more carefully analysis, for example, Hoeffding's lemma (Lemma 12 in Lecture 02), we have

$$\mathbb{E}[e^{\lambda X}] \leq \exp\left((b-a)^2\lambda^2/8
ight).$$

Hence X is actually sub-Gaussian with parameter $\sigma = \frac{(b-a)}{2}$.

Sub-Gaussian R.V.s

Theorem (Sub-Gaussian Tail Bound)

Let X be a s sub-Gaussian with parameter σ . Then

$$\mathbb{P}\left\{|\boldsymbol{X}-\boldsymbol{\mu}| \geq t\right\} \leq 2\boldsymbol{e}^{-\frac{t^2}{2\sigma^2}}, \, \forall t > \boldsymbol{0}.$$

Proof.

$$\log \mathbb{P}\left\{ (X - \mu) \ge t \right\} \le -\sup_{\lambda \ge 0} \left\{ \lambda t - \log \mathbb{E}\left[e^{\lambda(X - \mu)} \right] \right\}$$
$$\le -\sup_{\lambda \ge 0} \left\{ \lambda t - \sigma^2 \lambda^2 / 2 \right\} = -t^2 / 2\sigma^2$$

On the other hand, $-(X - \mu)$ also sub-Gaussian, so $\log \mathbb{P} \{-(X - \mu) \ge t\} \le -t^2/2\sigma^2$.

.

Sub-Gaussian R.V.s

Proposition (Hoeffding Bound)

Suppose that the variables X_i , i = 1, ..., n are independent, and X_i has mean μ_i and sub-Gaussian parameter σ_i . Then for all $t \ge 0$, we have

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right] \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

Equivalently,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu_{i})\geq\epsilon\right]\leq\exp\left(-\frac{n^{2}\epsilon^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}\right).$$

Proof sketch: it suffices to bound the MGF.

$$\mathbb{E}[\boldsymbol{e}^{\lambda\sum(\boldsymbol{X}_i-\mu_i)}] = \prod_i \mathbb{E}[\boldsymbol{e}^{\lambda(\boldsymbol{X}_i-\mu_i)}] \leq \boldsymbol{e}^{\frac{\lambda^2\sum_i \sigma_i^2}{2}}.$$

Wei-Ning Chen

Concentration Inequalities

Definition

A random variable X with mean $\mu = \mathbb{E}[X]$ is sub-Exponential if there are non-negative parameters (ν , b) such that

$$\mathbb{E}[e^{\lambda(X-\mu)}] \leq e^{\frac{\nu^2 \lambda^2}{2}}, \text{ for all } |\lambda| < \frac{1}{b}.$$

Remark : It follows immediately that any sub-Gaussian variable is also sub-exponential.

Sub-Exponential Variables

Example

Let
$$Z \sim N(0, 1)$$
 and $X = Z^2$. Then

$$\mathbb{E}[e^{\lambda(X-1)}] = \frac{1}{\sqrt{2\pi}} \int e^{\lambda(z^2-1)} e^{-z^2/2} dz = \frac{e^{-\lambda}}{\sqrt{1-2\lambda}}.$$

Following some calculus, it can be verified that

$$rac{oldsymbol{e}^{-\lambda}}{\sqrt{1-2\lambda}} \leq oldsymbol{e}^{4\lambda^2/2}, \,\, extsf{for} \, |\lambda| \leq rac{1}{4},$$

and hence X is sub-exponential with parameters with parameter $(\nu, b) = (2, 4)$.

Sub-Exponential Tail Bound

Theorem (Sub-Exponential Tail Bound)

Suppose that X is sub-exponential with parameters (ν, b) . Then

$$\mathbb{P}\left\{X-\mu \ge t\right\} \le \begin{cases} e^{-\frac{t^2}{2\nu^2}}, & \text{if } 0 \le t \le \frac{\nu^2}{b} \\ e^{-\frac{t}{2b}}, & \text{for } t > \frac{\nu^2}{b} \end{cases}$$

Moreover, the following bound also holds:

$$\mathbb{P}\left\{\boldsymbol{X}-\boldsymbol{\mu}\geq t\right\}\leq \boldsymbol{e}^{-\frac{t^2}{2(bt+\nu^2)}}, \text{ for all } t.$$

Remark: We can apply the same trick to obtain two-sided bound.

Sub-Exponential Tail Bound

Proof. From Chernoff's bound, we have

$$\log \mathbb{P}\left\{ (X - \mu) \ge t \right\} \le -\sup_{\lambda \ge 0} \left\{ \lambda t - \log \mathbb{E}\left[e^{\lambda (X - \mu)} \right] \right\}$$
$$\le -\sup_{\lambda < 1/b} \left\{ \lambda t - \lambda^2 \nu^2 / 2 \right\}$$

1 If
$$0 \le t \le \frac{\nu^2}{b}$$
, choose $\lambda = \frac{t}{\nu^2} (\le \frac{1}{b})$, then $(\star) \le -\frac{t^2}{2\nu^2}$.
2 If $t \ge \frac{\nu^2}{b}$, choose $\lambda = \frac{1}{b}$, and $(\star) \le -\frac{1}{b} + \frac{1}{2b}\frac{\nu^2}{2b} \le -\frac{t}{2b}$ ($\because \frac{\nu^2}{2b} \le t$).
3 Specially, choose $\lambda = \frac{t}{bt + \nu^2}$, $(\star) \le -\frac{t^2}{2(bt + \nu^2)}$

(*)

Bernstein's Condition

Definition (Bernstein's Condition)

Given a random variable X with mean $\mu = \mathbb{E}[X]$, variance $\sigma = \mathbb{E}[X^2 - \mu^2]$, we say that *Bernstein's condition* with parameter *b* holds if

$$\left| \mathbb{E}[(X - \mu)^k] \right| \le \frac{1}{2} k! \sigma^2 b^{k-2}, \text{ for all } k = 3, 4, ...$$

Theorem (Bernstein's Inequality)

For any random variable X satisfying the Bernstein condition, we have

 $\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\left(\frac{\lambda^2 \sigma^2/2}{1-b|\lambda|}\right)}$ **X** is sub-exponential with parameters ($\sqrt{2}\sigma$, 2b)

$$\blacksquare \mathbb{P}\{|\boldsymbol{X}-\boldsymbol{\mu}| \geq t\} \leq 2e^{-\frac{t^2}{2(\sigma^2+b)}}$$

Wei-Ning Chen

Bernstein's Condition

Proof. (1) If *X* satisfies Bernstein's condition, then

$$\mathbb{E}[e^{\lambda(X-\mu)}] = 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \lambda^k \frac{\mathbb{E}(X-\mu)^k}{k!} \stackrel{(i)}{\leq} 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} (|\lambda|b)^{k-2}$$

$$\stackrel{(ii)}{\leq} 1 + \frac{\lambda^2 \sigma^2/2}{1-b|\lambda|} \leq e^{\left(\frac{\lambda^2 \sigma^2/2}{1-b|\lambda|}\right)}.$$

(2) Hence, when
$$|\lambda| \leq \frac{1}{2b}$$
, $\mathbb{E}[e^{\lambda(X-\mu)}] \leq e^{-\frac{\lambda^2(\sqrt{2\sigma})^2}{2}}$.
(3) Choosing $\lambda = \frac{t}{bt + \sigma^2} \in [0, \frac{1}{b})$ and apply by (1) with Chernoff's bound.

Bernstein's Condition

Proposition

Let X_k , k = 1, ..., n are independent sub-exponential random variables, with parameter (ν_k, b_k) . Then $\sum_k (X_k - \mu_k)$ is sub-exponential with the parameter (ν_*, b_*) , with

$$(\nu_{\star}, b_{\star}) \triangleq (\sqrt{\sum_{k} \nu_{k}^{2}/n, \max_{k} b_{k}}).$$

Moreover, we have

$$\mathbb{P}\left\{\frac{1}{n}\sum_{k}(X_{k}-\mu_{k})\geq t\right\}\leq \begin{cases} e^{-\frac{nt^{2}}{2\nu_{\star}^{2}}}, \text{ for } 0\leq t\leq \frac{\nu_{\star}}{b_{\star}}\\ e^{-\frac{nt}{2b_{\star}^{2}}}, \text{ for } t\geq \frac{\nu_{\star}}{b_{\star}}\end{cases}$$

Summary

(1) sub-Gaussian random variable with parameter σ_i :

(2) sub-exponential random variable with parameter (ν_i , b_i):

Bernstein's condition : relates (ν, b) with variance and support

Up to now, we see various types of bounds on sums of independent random variables

Many problems require bounds on more general functions of random variables

One classical approach is based on *martingale decompositions*

Recap: Conditional Expectation

The conditional expectation $\mathbb{E}[g(X_1, ..., X_n) | X_1, ..., X_k]$ is a function of $(X_1, ..., X_k)$

$$\mathbb{E}[g(X_1,...,X_n)|X_1,...,X_k] = \int g(X_1,...,X_k,\mathbf{x_{k+1}},...\mathbf{x_n}) dP(\mathbf{x_{k+1}},...,\mathbf{x_n}|X_1,...,X_k).$$

The conditional expectation $\mathbb{E}[g(X_1, ..., X_n)|X_1, ..., X_k]$ is an orthogonal projection of $g(\cdot)$ to the functional space spanned by $(X_1, ..., X_k)$.

We use the notation \mathcal{F}_k to denote the space spanned by $(X_1, ..., X_k)$, i.e.

$$\mathbb{E}[g(X_1,...,X_n)|\mathcal{F}_k] \triangleq \mathbb{E}[g(X_1,...,X_n)|X_1,...,X_k].$$

(Rigorously speaking , $\mathcal{F}_k \triangleq \sigma(X_1, ..., X_k)$)

Recap: Conditional Expectation

Properties of Conditional Expectation

Pulling out known factors :

$$\mathbb{E}[g(X_1,...,X_k)f(X_1,...,X_n)|\mathcal{F}_k] = g(X_1,...,X_k)\mathbb{E}[f(X_1,...,X_n)|\mathcal{F}_k].$$

Law of total expectation :

$$\mathbb{E}\left(\mathbb{E}(g(X_1,...,X_n)|\mathcal{F}_k)\right) = \mathbb{E}[g(X_1,...,X_n)]$$

Tower property : for any $k_1 \leq k_2$, we have

$$\mathbb{E}\left(\mathbb{E}\left(g(X_1,...,X_n)|\mathcal{F}_{k_2}\right)|\mathcal{F}_{k_1}\right)\right) = \mathbb{E}(g(X_1,...,X_n)|\mathcal{F}_{k_1}))$$

Remark: we have $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3 \subseteq ... \subseteq \mathcal{F}_n$

Definition (Martingale)

Given a sequence of random variables $\{Y_k\}_{k=1}^{\infty}$, we say $\{Y_k\}$ is a martingale with respect to $\{X_k\}$, if

$$\mathbb{E}[|Y_k|] < \infty$$
, and $\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = Y_{k-1}$

(That is, $\mathbb{E}[Y_k|X_1, ..., X_{k-1}] = Y_{k-1}$)

Example (Random Walk)

Let S_n be the one-dimensional random walk. That is,

$$S_n = \sum_{i=1}^n W_i,$$

where W_i takes values in $\{+1, -1\}$ with probability 1/2 independently. Then we have

$$\mathbb{E}[S_k|W_1,...,W_{k-1}] = \sum_{i=1}^{k-1} W_i + \mathbb{E}[W_k|W_1,...,W_{k-1}] = S_{k-1}.$$

Wei-Ning Chen

Martingale

Example (Dependent Increment Martingale)

Let a > 0, and W_i takes values in $\{+1, -1\}$ with probability $\frac{1}{a+1}, \frac{a}{a+1}$ independently, and let $S_k = \sum_{i=1}^k W_i$. Then the process $X_k = a^{S_k}$ is a martingale:

Check:

$$\mathbb{E}[X_k|\mathcal{F}_{k-1}] = \mathbb{E}[a^{S_k}|\mathcal{F}_{k-1}] = a^{S_{k-1}}\mathbb{E}[a^{W_k}|\mathcal{F}_{k-1}]$$
$$= a^{S_{k-1}}\left(ap + \frac{1}{a}(1-p)\right) = X_{k-1}.$$

Doob's Construction

In general, we can construct a martingale by conditioning:

Definition (Doob's Martingale)

Let $f(\cdot) : \mathbb{R}^n \to \mathbb{R}$ be a measurable function. Then

 $Y_k \triangleq \mathbb{E}[f(X_1, ..., X_n) | \mathcal{F}_k]$ is a martingale.

Note that we have

$$\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = \mathbb{E}\left(\mathbb{E}\left(f(X_1,...,X_n)|\mathcal{F}_k\right)|\mathcal{F}_{k-1}\right) \\ = \mathbb{E}\left(f(X_1,...,X_n)|\mathcal{F}_{k-1}\right) = Y_{k-1}.$$

Doob's Martingale

According to Doob's martingale, $f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)]$ can be decomposed into sum of martingale difference:

$$f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)] = \sum_{k=1}^n (Y_k - Y_{k-1}),$$

with $Y_k \triangleq \mathbb{E}[f(X_1, ..., X_n) | \mathcal{F}_k]$. Note that we have

$$Y_n = \mathbb{E}[f(X_1, ..., X_n) | \mathcal{F}_n] = f(X_1, ..., X_n), \text{ and } Y_0 = \mathbb{E}[f(X_1, ..., X_n)].$$

This motivates us to study the concentration inequalities on sum of *martingale difference* sequence.

Martingale Difference Sequence

Definition (Martingale Difference)

A sequence of random variable $\{D_k\}$ is a martingale difference with respect to $\{\mathcal{F}_k\}$, if

 $\mathbb{E}[|D_k|] < \infty$ and $\mathbb{E}[D_k|\mathcal{F}_{k-1}] = 0.$

Remark: If
$$Y_k = \sum_{i=1}^k D_k + Y_0$$
 ($\Leftrightarrow D_k = Y_k - Y_{k-1}$), then Y_k is a martingale. Also,

$$Y_n-Y_0=\sum_{k=1}^n D_k.$$

Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding)

Let $\{(D_k, \mathcal{F}_k)\}$ be a martingale difference sequence, and suppose that $|D_k| \le b_k$ almost surely for all $k \ge 1$. Then for all $t \ge 0$,

$$\mathbb{P}\left\{\left|\sum_{k=1}^n D_k\right| \geq t\right\} \leq 2e^{-\frac{2t^2}{\sum_{k=1}^n b_k^2}}.$$

Proof. By Chernoff's bound, we have

$$\log \mathbb{P}\left\{\sum\nolimits_{k=1}^{n} D_{k} \geq t\right\} \leq -\sup_{\lambda \geq 0} \left\{\lambda t - \log \mathbb{E}\left[e^{\lambda \left(\sum\nolimits_{k=1}^{n} D_{k}\right)}\right]\right\}$$

It suffices to show that $\log \mathbb{E}\left[e^{\lambda(\sum_{k=1}^{n} D_{k})}\right] \leq \frac{\lambda^{2} \sum_{k} b_{k}^{2}}{8}$.

Azuma-Hoeffding Inequality

Proof. (cont'd) Notice that from the property of martingale, we have

$$\mathbb{E}\left[\boldsymbol{e}^{\lambda(\sum_{k=1}^{n} D_{k})}\right] = \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{e}^{\lambda(\sum_{k=1}^{n-1} D_{k})}\boldsymbol{e}^{\lambda D_{n}}|\mathcal{F}_{n-1}\right]\right]$$
$$= \mathbb{E}\left[\boldsymbol{e}^{\lambda(\sum_{k=1}^{n-1} D_{k})}\mathbb{E}\left[\boldsymbol{e}^{\lambda D_{n}}|\mathcal{F}_{n-1}\right]\right]$$

Our goal is to show that $\mathbb{E}\left[e^{\lambda D_n}|\mathcal{F}_{n-1}\right] \leq e^{\lambda^2 b_k^2/8}$ almost surely. By the convexity, we have

$$e^{\lambda D_n} \leq rac{1+D_n/b_n}{2}e^{\lambda b_n} + rac{1-D_n/b_n}{2}e^{-\lambda b_n},$$

and hence

$$\mathbb{E}\left[oldsymbol{e}^{\lambda D_n}|\mathcal{F}_n
ight] \leq \mathbb{E}\left[rac{1+D_n/b_n}{2}oldsymbol{e}^{\lambda b_n}+rac{1-D_n/b_n}{2}oldsymbol{e}^{-\lambda b_n}|\mathcal{F}_n
ight] = rac{1}{2}oldsymbol{e}^{\lambda b_n}+rac{1}{2}oldsymbol{e}^{-\lambda b_n}.$$

 (\star)

Proof. (cont'd)

Notice that by Taylor expansion, we can show that

$$rac{1}{2}oldsymbol{e}^{\lambda b_n}+rac{1}{2}oldsymbol{e}^{-\lambda b_n}\leq oldsymbol{e}^{rac{\lambda^2 b_n^2}{2}}$$

(the constant can be improved by carefully apply Jensen's inequality). Iteratively,

$$(\star) \leq \mathbb{E}\left[\boldsymbol{e}^{\lambda(\sum_{k=1}^{n-1}D_k)}\right] \boldsymbol{e}^{\lambda^2 b_n^2/8} \leq \mathbb{E}\left[\boldsymbol{e}^{\lambda(\sum_{k=1}^{n-2}D_k)}\right] \boldsymbol{e}^{\lambda^2 b_n^2/8} \boldsymbol{e}^{\lambda^2 b_{n-1}^2/8} \leq \ldots \leq \boldsymbol{e}^{\frac{\lambda^2 \sum_k b_k^2}{8}},$$

with probability 1.

Therefore, from the Chernoff's bound

$$\log \mathbb{P}\left\{\sum_{k=1}^{n} D_{k} \geq t\right\} \leq -\sup_{\lambda \geq 0} \left\{\lambda t - \log \mathbb{E}\left[e^{\lambda(\sum_{k=1}^{n} D_{k})}\right]\right\}$$
$$\leq -\sup_{\lambda \geq 0} \left\{\lambda t - \frac{\lambda^{2} \sum_{k} b_{k}^{2}}{8}\right\}.$$

Choosing the optimal λ , the proof is complete.

Wei-Ning Chen

Bounded Differences Inequality

We say that $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the bounded difference property with parameters $(L_1, ..., L_n)$, if for each k = 1, 2, ..., n,

$$|f(x_1,...,x_{k-1},x_k,x_{k+1},...,x_n) - f(x_1,...,x_{k-1},x_k',x_{k+1},...,x_n)| \leq L_k, \ \forall x_k,x_k'.$$

Theorem (Bounded differences inequality)

Suppose that f satisfies the bounded difference property and that the random vector $(X_1, X_2, ..., X_n)$ has independent components. Then

$$\mathbb{P}\{|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| \ge t\} \le 2e^{-\frac{2t^2}{\sum_{k=1}^n L_k^2}}, \text{ for all } t \ge 0.$$

Remark : In Doob's martingale, $X_1, ..., X_n$ don't have to be independent!

Bounded Differences Inequality

Proof.

Recalling the Doob's martingale, and according to Azuma's inequality, it suffices to show that the difference is bounded almost surely:

$$D_k = \mathbb{E}[f(X_1,...,X_n)|X_1,...,X_k] - \mathbb{E}[f(X_1,...,X_n)|X_1,...,X_{k-1}].$$

Define the function $g : \mathbb{R}^k \to \mathbb{R}$ as $g(x_1, ..., x_k) \triangleq \mathbb{E}[f(X_1, ..., X_n) | x_1, ..., x_k]$, then we have

$$D_k = g(X_1, ..., X_k) - \mathbb{E}_{X'_k}[g(X_1, ..., X_{k-1}, X'_k)].$$

check:

$$\begin{split} \mathbb{E}[f(X_1,...,X_n)|X_1,...,X_{k-1}] &= \mathbb{E}[g(X_1,...,X_k)|X_1,...,X_{k-1}] \\ &= \int g(X_1,...,X_{k-1},x_k)dP(x_k|X_1,...,X_k) \\ (\because \text{ independence assumption }) &= \int g(X_1,...,X_{k-1},x_k)dP(x_k) = \mathbb{E}_{X'_k}[g(X_1,...,X_{k-1},X'_k)] \end{split}$$

Bounded Differences Inequality

Proof (cont'd)

Therefore,

$$D_k = g(X_1,...,X_k) - \mathbb{E}_{X_k'}[g(X_1,...,X_{k-1},X_k')] = \mathbb{E}_{X_k'}[g(X_1,...,X_k) - g(X_1,...,X_k')].$$

Notice that we have

$$egin{aligned} |g(x_1,...,x_k) - g(x_1,...,x_k)| &= |\mathbb{E}_{X_{k+1}^n}[f(x_1,...,x_k,X_{k+1},...,X_n) - f(x_1,...,x_k',X_{k+1},...,X_n)]| \ &\leq L_k, \end{aligned}$$

showing $|D_k| \le L_k$ almost surely, and hence establish the theorem.