Introduction to the VC-Dimension

Wei-Ning Chen

December 28, 2018

Outline

11 Recap
[Motivation
3 The VC-Dimension

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem

- VC-entropy and Growth Function

6 Exercises and Discussion

RECAP

DEFINITION (UNIFORM CONVERGENCE)

We say that a hypothesis class \mathcal{H} has the uniform convergence property (w.r.t. a domain Z and a loss function ℓ) if there exists a function $m_{\mathcal{H}}^{U C}$ such that for every $\epsilon, \delta \in(0,1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of $m \geq m_{\mathcal{H}}^{U C}(\epsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D}, then

$$
\mathcal{P}\left(\left|L_{S}(h)-L_{\mathcal{D}}(h)\right| \leq \epsilon, \forall h \in \mathcal{H}\right) \geq 1-\delta
$$

Equivalently,

$$
\lim _{m \rightarrow \infty} \mathcal{P}\left(\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right)=0
$$

Remark: Compare to the difinition of PAC:

$$
\mathcal{P}\left(L_{\mathcal{D}}\left(h_{S}\right)-\inf _{h \in \mathcal{H}} L_{\mathcal{D}}(h) \leq \epsilon\right) \geq 1-\delta
$$

RECAP

THEOREM (NO-FREE-LUNCH)

Let \mathcal{A} be any learning algorithm for the task of binary classification with respect to the $0-1$ loss over a domain \mathcal{X}. Let m be any number smaller than $|\mathcal{X}| / 2$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times\{0,1\}$ such that:
\square There exists a function $f: X \rightarrow\{0,1\}$ with $L_{\mathcal{D}}(f)=0$.
$\square \mathcal{P}\left(L_{\mathcal{D}}(\mathcal{A}(S)) \geq \frac{1}{8}\right) \geq \frac{1}{7}$

2 Motivation

3 The VC-Dimension

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem

- VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

LEARNING FROM INFINITE-SIZE HYPOTHESIS CLASS

In chapter 2, we see that every finite hypothesis class \mathcal{H} is learnable; moreover, the sample complexity is bounded by

$$
m_{\mathcal{H}}(\delta, \epsilon) \leq \frac{\log (|\mathcal{H}|) / \delta}{\epsilon}
$$

So, what if $|\mathcal{H}|=\infty$?

Example: Concentric Circle

EXAMPLE

Let $\mathcal{X}=\mathbb{R}^{2}, \mathcal{Y}=\{0,1\}$, and let \mathcal{H} be the class of concentric circles in the plane, that is, $\mathcal{H}=\left\{h_{r}: r \in \mathbb{R}_{+}\right\}$. Prove that \mathcal{H} is PAC learnable (assume realizability), and its sample complexity is bounded by

$$
m_{\mathcal{H}}(\epsilon, \delta) \leq \frac{\log (2 \delta)}{\epsilon}
$$

First, we specify \mathcal{H}_{B}.
By definition, if $h \in \mathcal{H}_{B}$, we have $\mathcal{D}\left(h(x) \neq h^{*}(x)\right) \geq \epsilon$

Example: Concentric Circle

Equivalently, $\mathcal{D}\left(h(x)=h^{*}(x)\right) \leq 1-\epsilon$

If now \mathcal{H} is finite, we can apply union bound:

$$
\mathcal{D}^{m}\left(\bigcup_{h \in \mathcal{H}_{B}} \forall i=[m] \mid h\left(x_{i}\right)=h^{*}\left(x_{i}\right)\right) \leq|\mathcal{H}|(1-\epsilon)^{m} \leq \delta
$$

We can slightly modify the union bound for the case $|\mathcal{H}|=\infty$.

Example: Concentric Circle

Example: Concentric Circle

Example: Concentric Circle

Example: Concentric Circle

Let $S \sim \mathcal{D}^{m}$, and $r_{\text {min }}=\min _{x \in S} r_{x}, r_{\max }=\max _{x \in S} r_{x}$.
We have

$$
\begin{aligned}
\mathcal{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}\left(h_{S}\right) \geq \epsilon\right) & \leq \mathcal{P}_{S \sim \mathcal{D}^{m}}\left(r_{\min } \geq r_{1} \cup r_{\max } \leq r_{0}\right) \\
& \leq \mathcal{P}_{S \sim \mathcal{D}^{m}}\left(r_{\min } \geq r_{1}\right)+\mathcal{P}_{S \sim \mathcal{D}^{m}}\left(r_{\max } \leq r_{0}\right) \\
& \leq 2(1-\epsilon)^{m} \leq 2 e^{-m \epsilon} \leq \delta
\end{aligned}
$$

Therefore, for all ϵ and δ, the sample complexity can be bounded by

$$
m \leq \frac{\log (2 / \delta)}{\epsilon} \square
$$

■ In chapter 2, we see that every finite hypothesis class \mathcal{H} is learnable; moreover, the sample complexity is bounded by

$$
m_{\mathcal{H}}(\delta, \epsilon) \leq \frac{\log (|\mathcal{H}|) / \delta}{\epsilon}
$$

- Also, we see some examples that even the class is infinite-size, it may still be learnable.
\square Therefore, we need a measure of \mathcal{H} 's complexity

■ In this cahpter, we will formally define the complexity of \mathcal{H} (VC dimension), and show that

$$
\mathcal{H} \text { has uniform convergence property } \Longleftrightarrow \operatorname{VCdim}(\mathcal{H})<\infty
$$

3 The VC-Dimension

- Definitions

■ Examples
4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem

- VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

The VC-Dimension

DEFINITION (RESTRICTION \mathcal{H} TO C)

Let \mathcal{H} be a class of function from \mathcal{X} to $\{0,1\}$ and let $C=\left\{c_{1}, \ldots, c_{m}\right\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set off all functions from C to $\{0,1\}$ that can be derived from \mathcal{H}. That is,

$$
\mathcal{H}_{C}=\left\{h\left(c_{1}\right), \ldots, h\left(c_{m}\right)\right): h \in \mathcal{H}
$$

DEFINITION (SHATTERING)

A hypothesis class \mathcal{H} shatters a finite set C if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is, $\left|\mathcal{H}_{C}\right|=2^{|C|}$.

The VC-Dimension

The VC-Dimension

COROLLARY (COROLLARY6.4)

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$. Let m be a training set size. Assume that there exists a set C of size $2 m$ that is shattered by \mathcal{H}.
Then, for any learning algorithm \mathcal{A}

$$
\mathcal{P}\left(L_{\mathcal{D}}(\mathcal{A}(S)) \geq \frac{1}{8}\right) \geq \frac{1}{7}
$$

Remark: This is a direct result from NFL Theorem

Remark2: If for all m, there exists a set C of size $2 m$ that is shattered by \mathcal{H}, then \mathcal{H} is not PAC learnable

The VC-Dimension

DEFINITION (VC-DIMENSION)

The VC-dimension of a hypothesis class \mathcal{H}, denoted $\operatorname{VCdim}(\mathcal{H})$, is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H}. If \mathcal{H} can shatter sets of arbitrarily large size, we say that \mathcal{H} has infinite VC-dimension.

Remark: If $\operatorname{VCdim}(\mathcal{H})=\mathrm{d}$, it means that

$$
\exists C \subset \mathcal{X} \text { that can be shattered by } \mathcal{H},
$$

NOT
$\forall C \subset \mathcal{X}$ that can be shattered by \mathcal{H},

Example: Threshold Functions

- Let \mathcal{H} be the all threshold function on \mathbb{R}.
- For an arbitrary set $C=\left\{c_{1}\right\}, \mathcal{H}$ shatters C, therefore $V \operatorname{Ddim}(\mathcal{H}) \geq 1$.

■ For an arbitrary set $C=\left\{c_{1}, c_{2}\right\}, \mathcal{H}$ does not shatter C. Therefore, $\operatorname{VDdim}(\mathcal{H})<2$.

Example: Intervals

- Let \mathcal{H} be the intervals over \mathbb{R}; that is, $\mathcal{H}=\left\{\mathbb{1}_{[a, b]}(x) \mid a, b \in \mathbb{R}\right\}$

■ It is easy to show that $\operatorname{VCdim}(\mathcal{H})=2$

Example: Axis Aligned Rectangles

■ Let \mathcal{H} be the the class of axis aligned rectangles:

$$
\mathcal{H}=\left\{\mathbb{1}_{[a, b] \times[c, d]} \mid a, b, c, d \in \mathbb{R}\right\}
$$

■ $\operatorname{VDdim}(\mathcal{H})=4$

Example: Axis Aligned Rectangles

- Examples

4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem

- VC-entropy and Growth Function

6 ExERCISES AND DISCUSSION

The Fundamental Theorem of Learning Theory

Theorem (The Fundamental Theorem of Statistical Learning)

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are quivalent:
$1 \mathcal{H}$ has the uniform covergence property.
2 Any ERM rule is a successful agnostic PAC learner for \mathcal{H}.
$3 \mathcal{H}$ is agnostic PAC learnable.
$4 \mathcal{H}$ is PAC learnable.
5 Any ERM rule is a successful PAC learner for \mathcal{H}.
$6 \mathcal{H}$ has a finite VC-dimension.

Growth Function ans Sauer’s Lemma

The growth function measures the maximal "effective? size of \mathcal{H} on a set of m examples.

Definition (Growth Function)

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} is defined as

$$
\tau_{\mathcal{H}}(m)=\sup _{C \subset \mathcal{X}:|C|=m}\left|\mathcal{H}_{C}\right|
$$

In words, $\tau_{\mathcal{H}}(m)$ is the number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Remark: if $\operatorname{VCdim}(\mathcal{H})=d$, then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m)=2^{m}$. However, what interesting is the case $m \geq d$.

Growth Function and Sauer’s Lemma

THEOREM (SAUER'S LEMMA)

Let \mathcal{H} be a hypothesis with $\operatorname{VCdim}(\mathcal{H})=d$. Then for all m,

$$
\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d}\binom{m}{i} \leq(e m / d)^{d}
$$

Remark: if $\operatorname{VCdim}(\mathcal{H})$ is finite, then the growth function is polynomial in m.

Uniform convergence in VC class

THEOREM (UNIFORM CONVERGES IN VC CLASS (THEOREM 6.11))

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}(m)$ be its growth function. Then, for every \mathcal{D} and every δ

$$
\mathcal{P}_{S \sim \mathcal{D}^{m}}\left(\left|L_{\mathcal{D}}(h)-L_{S}(h)\right|>\epsilon\right) \leq \delta
$$

where ϵ can be choose as $\frac{4+\sqrt{\left(\log \left(\tau_{\mathcal{H}}(2 m)\right)\right)}}{\delta \sqrt{2 m}}$. In other words, this theorem tells us that
$\operatorname{VCdim}(\mathcal{H})<\infty \Longleftrightarrow \lim _{\ell \rightarrow \infty} \frac{\log \tau_{\mathcal{H}}(\ell)}{\ell}=0 \Longleftrightarrow$ uniform convergence property holds.

The Fundamental Theorem of Learning Theory

Theorem (The Fundamental Theorem-Quantitative Version)

Let \mathcal{H} be a hypothesis class from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, there are absolute constants C_{1}, C_{2} such that:
$1 \mathcal{H}$ has the uniform covergence property with sample complexity

$$
C_{1} \frac{d+\log (1 / \delta)}{\epsilon^{2}} \leq m_{\mathcal{H}}^{U C} \leq C_{2} \frac{d+\log (1 / \delta)}{\epsilon^{2}}
$$

$2 \mathcal{H}$ is agnostic PAC learnable with sample complexity

$$
C_{1} \frac{d+\log (1 / \delta)}{\epsilon^{2}} \leq m_{\mathcal{H}} \leq C_{2} \frac{d+\log (1 / \delta)}{\epsilon^{2}}
$$

$3 \mathcal{H}$ is PAC learnable with sample complexity

$$
C_{1} \frac{d+\log (1 / \delta)}{\epsilon} \leq m_{\mathcal{H}} \leq C_{2} \frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon}
$$

- Examples

4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem
■ VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

Glivenko-Cantelli Theorem

DEFINITION (EMPIRICAL DISTRIBUTION)

Let X_{1}, \ldots, X_{n} be i.i.d. random variables in \mathbb{R} with common cdf $F(x)$. The empirical distribution function for X_{1}, \ldots, X_{n} is given by

$$
F_{n}(x)=\frac{1}{n} \sum_{i} \mathbb{1}_{(-\infty, x]\left(X_{i}\right)}
$$

THEOREM (GLIVENKO-CANTELLI THEOREM)

$$
\left\|F_{n}-F\right\|_{\infty}=\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \rightarrow 0 \text { almost surely }
$$

Remark: $\forall x, F_{n}(x) \rightarrow F(x)$ trivially by LLN

Glivenko-Cantelli Theorem

■ More generally, consider a space \mathcal{X} and σ-field \mathcal{F} generated by borel set with probability measure P and empirical measure P_{n}

■ Then $F(x)=P((-\infty, x])$, and $F_{n}(x)=P_{n}((-\infty, x])$
■ We can rewrite $\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|$ as $\sup _{c \in \mathcal{C}}\left|P_{n}(C)-P(C)\right|$,
where $\mathcal{C}=\{(-\infty, x] \mid x \in \mathbb{R}\}$
■ What happens for the general \mathcal{C} ?

Glivenko-Cantelli Class

DEFINITION (GC-CLASS)

Let $\mathcal{C} \subset\{C \mid C$ measurable in $\mathcal{X}\}$. Then if

$$
\left\|P_{n}-P\right\|_{\mathcal{C}}=\sup _{c \in \mathcal{C}}\left|P_{n}(C)-P(C)\right|
$$

we say class \mathcal{C} is a Glivenko-Cantelli class.

DEFINITION (UNIFORMLY GC)

A class is called uniformly Glivenko-Cantelli if the convergence occurs uniformly over all probability measures \mathcal{P} on $(\mathcal{X}, \mathcal{F})$:

$$
\sup _{P \in \mathcal{P}(S, A)} \mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{C}} \rightarrow 0
$$

VC Class

DEFINITION (VC CLASS)

A class with finite VC dimension is called a Vapnik-Chervonenkis class or VC class

THEOREM (VAPNIK AND CHERVONENKIS, 1968)

A class of sets \mathcal{C} is uniformly GC if and only if it is a Vapnik-Chervonenkis class

- Examples

4 The Fundamental Theorem of Learning Theory
5 Advanced Topics
■ Glivenko-Cantelli Theorem
■ VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

VC Entropy and Growth function

In previous lecture, we define the growth function as

$$
\tau_{\mathcal{H}}(m)=\sup _{C \subset \mathcal{X}:|C|=m}\left|\mathcal{H}_{C}\right|
$$

Let's rewrite the growth function as another form:

DEFINITION (VAPNIK)

Let $x_{1}, \ldots x_{m}$ be m samples from \mathcal{X}. Then define the number

$$
N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)=\left|\left\{h\left(x_{1}\right), \ldots, h\left(x_{m}\right) \mid h \in \mathcal{H}\right\}\right|=\left|\mathcal{H}_{\left\{x_{1}, \ldots, x_{m}\right\}}\right|
$$

Obviously

$$
\tau_{\mathcal{H}}(m)=\sup _{C \subset \mathcal{X}:|C|=m}\left|\mathcal{H}_{C}\right|=\sup _{\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{H}} N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)
$$

VC entropy and Growth function

The supremum is taken so that the bound works even in the worst distribution. In general case, we can replace supremum by exapectation w.r.t. a specific distribution, which gives another value:

DEFINITION (VC-ENTROPY, ANNEALED VC-ENTROPY, GROWTH FUNCTION)

Let $N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)$ be defined as previous. Then we defined VC-entropy as

$$
H^{\mathcal{H}}(m)=\mathbb{E} \log N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)
$$

The annealed VC-entropy as

$$
H_{a n n}^{\mathcal{H}}(m)=\log \mathbb{E} N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)
$$

And the growth function (with logarithm) as

$$
G^{\mathcal{H}}(m)=\log \sup _{x_{1}, \ldots, x_{m}} N^{\mathcal{H}}\left(x_{1}, \ldots, x_{m}\right)\left(=\log \tau_{\mathcal{H}}(m)\right)
$$

VC Entropy and Growth function

Corollary

$$
H^{\mathcal{H}}(m) \leq H_{a n n}^{\mathcal{H}}(m) \leq G^{\mathcal{H}}(m)
$$

Rmark: The fundamental theorem of learning theory tells us

$$
\lim _{m \rightarrow \infty} \frac{G^{\mathcal{H}}(m)}{m}=\lim _{m \rightarrow \infty} \frac{\log \tau_{\mathcal{H}}(m)}{m}=0 \Longleftrightarrow \lim _{m \rightarrow \infty} \mathcal{P}\left(\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right)=0
$$

The convergence is uniform for all distribution P in $(\mathcal{X}, \mathcal{F})$

Three milestones of Learning Theory

THEOREM (VAPNIK)

1

$$
\lim _{m \rightarrow \infty} \mathcal{D}\left(\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right)=0
$$

is sufficient and necessary that

$$
\lim _{m \rightarrow \infty} \frac{H^{\mathcal{H}}(m)}{m}=0
$$

2

$$
\lim _{m \rightarrow \infty} \mathcal{D}\left(\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right) \leq e^{-c \epsilon^{2} m} \text { (fast decay) }
$$

is sufficient if

$$
\lim _{m \rightarrow \infty} \frac{H_{a n n}^{\mathcal{H}}(m)}{m}=0
$$

Three milestones of Learning theory

THEOREM (VAPNIK)

3

$$
\lim _{m \rightarrow \infty} P\left(\sup _{h \in \mathcal{H}}\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right)=0 \text {, for all } P \in(\mathcal{X}, \mathcal{F})
$$

is sufficient and necessary that

$$
\lim _{m \rightarrow \infty} \frac{G^{\mathcal{H}}(m)}{m}=0
$$

6 EXERCISES AND DISCUSSION

