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RECAP

DEFINITION (UNIFORM CONVERGENCE)

We say that a hypothesis class H has the uniform convergence property (w.r.t. a domain
Z and a loss function ¢) if there exists a function mY,© such that for every ¢, € (0,1) and
for every probability distribution D over Z, if S is a sample of m > m%c(@ ) examples
drawn i.i.d. according to D, then

P(|Ls(h) — Lp(h)| < e, Yhe H) >1-6
Equivalently,
lim P(sup |Ls(h) — Lp(h)| >€) =0

m—r0o0 heH

Remark: Compare to the difinition of PAC:
Lp(hg) — inf Lp(h) <e)>1-96
P(Lp(hs) — inf Lp(h) <€) =
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RECAP

THEOREM (NO-FREE-LUNCH)

Let A be any learning algorithm for the task of binary classification with respect to the

0 — 1 loss over a domain X. Let m be any number smaller than |X|/2, representing a
training set size. Then, there exists a distribution D over X x {0, 1} such that:

B There exists a function f : X — {0,1} with Lp(f) = 0.

1 1
5 PLo(A(S) 2 §) 2
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MOTIVATION
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LEARNING FROM INFINITE-SIZE HYPOTHESIS CLASS

In chapter 2, we see that every finite hypothesis class H is learnable; moreover, the
sample complexity is bounded by

log(|#[)/0

€

my (6¢ 6) <

So, what if |[H| = c0?
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EXAMPLE: CONCENTRIC CIRCLE

EXAMPLE

Let X = R?, Y = {0, 1}, and let H be the class of concentric circles in the plane, that is,

H = {h, : r € R }. Prove that H is PAC learnable (assume realizability), and its sample
complexity is bounded by

log(20)

€

m'H(E, 6) <

First, we specify Hp.
By definition, if h € Hp, we have D(h(z) # h*(x)) > €

X

h* h
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EXAMPLE: CONCENTRIC CIRCLE

Equivalently, D(h(z) = h*(x)) <1—¢€

If now H is finite, we can apply union bound:

(U Vi = mllhGe) = K@) < IO — ™ <8
heHp

We can slightly modify the union bound for the case |H| = oo
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EXAMPLE: CONCENTRIC CIRCLE

h*
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EXAMPLE: CONCENTRIC CIRCLE
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EXAMPLE: CONCENTRIC CIRCLE
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EXAMPLE: CONCENTRIC CIRCLE

t S ~ H i 1 X ax xZ-
Le I ar Id Tmin min? T maxs

We have
Pspm(Lp(hs) > €) < Pspm(rmin > r1 U rmax < 7o)

< Ps~pm(rmin > 71) + Pspm (rmax < 70)
<2(1—¢)Mm <27 <6
Therefore, for all e and 4, the sample complexity can be bounded by

m < 108(2/0)

€
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B In chapter 2, we see that every finite hypothesis class H is learnable; moreover, the
sample complexity is bounded by

(s, e) < (/9

B Also, we see some examples that even the class is infinite-size, it may still be
learnable.

B Therefore, we need a measure of H’s complexity

B In this cahpter, we will formally define the complexity of H (VC dimension) ,
and show that

‘H has uniform convergence property <= VCdim(H) < oo
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THE VC-DIMENSION
m Definitions
m Examples
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THE VC-DIMENSION

DEFINITION (RESTRICTION H TO (')

Let H be a class of function from X to {0,1} and let C = {cy, ..., ¢, } C X. The restriction
of H to C'is the set off all functions from C' to {0, 1} that can be derived from H. That is,

He ={h(c1),....;h(cm)) :h € H

DEFINITION (SHATTERING)

A hypothesis class H shatters a finite set C'if the restriction of H to C is the set of all
functions from C to {0,1}. Thatis,|H¢| = 2/°/.
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THE VC-DIMENSION

X
@] (®)
X2 Xs X2 Xz
X
X X X Xy
Q
) 1)
X5 Xz\ X3 X5
X 4
xl xl xl xl

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018

16 /40



THE VC-DIMENSION

COROLLARY (COROLLARY6.4)

Let H be a hypothesis class of functions from X to {0, 1}. Let m be a training set size.
Assume that there exists a set C of size 2m that is shattered by H.
Then, for any learning algorithm A

P(Lp(A(S)) = 2) =2

ool —
=

Remark: This is a direct result from NFL Theorem

Remark2: If for all m, there exists a set C of size 2m that is shattered by #, then # is not
PAC learnable

WEI-NING CHEN INTRODUCTION TO THE VC-DIMENSION DECEMBER 28, 2018 17740



THE VC-DIMENSION

DEFINITION (VC-DIMENSION)

The VC-dimension of a hypothesis class #, denoted VCdim(#), is the maximal size of a
set C' C X that can be shattered by H. If  can shatter sets of arbitrarily large size, we
say that # has infinite VC-dimension.

Remark: If VCdim(#)=d, it means that

3C c X that can be shattered by H,

NOT

YC C X that can be shattered by %,
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EXAMPLE: THRESHOLD FUNCTIONS

B Let H be the all threshold function on R.

B For an arbitrary set C' = {c;}, H shatters C,
therefore VDdim(#) > 1.

B For an arbitrary set C' = {c1,c2} , H does not shatter C.

Therefore, VDdim(H) < 2.

WEI-NING CHEN INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018

19740



EXAMPLE: INTERVALS

B Let H be the intervals over R; that is, H = {1, (x)|a,b € R}

B It is easy to show that VCdim(#) = 2
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EXAMPLE: AXIS ALIGNED RECTANGLES

B Let # be the the class of axis aligned rectangles:

H = {1 pyx[eqla,b,c,d € R}

W VDdim(H) = 4
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EXAMPLE: AXIS ALIGNED RECTANGLES
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THE FUNDAMENTAL THEOREM OF LEARNING THEORY
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THE FUNDAMENTAL THEOREM OF LEARNING THEORY

THEOREM (THE FUNDAMENTAL THEOREM OF STATISTICAL LEARNING)

Let H be a hypothesis class of functions from a domain X to {0,1} and let the loss
function be the 0-1 loss. Then, the following are quivalent:

‘H has the uniform covergence property.

Any ERM rule is a successful agnostic PAC learner for 1.
‘H is agnostic PAC learnable.

‘H is PAC learnable.

Any ERM rule is a successful PAC learner for H.

‘H has a finite VC-dimension.
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GROWTH FUNCTION ANS SAUER’S LEMMA

The growth function measures the maximal "effective? size of # on a set of m examples.

DEFINITION (GROWTH FUNCTION)

Let # be a hypothesis class. Then the growth function of H is defined as

n(m) = sup [Hc|
CCcx:|Cl=m

In words, 74 (m) is the number of different functions from a set C' of size m to {0, 1} that
can be obtained by restricting # to C.

Remark: if VCdim(#) = d, then for any m < d we have my(m) = 2.
However, what interesting is the case m > d.
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GROWTH FUNCTION AND SAUER’S LEMMA

THEOREM (SAUER’S LEMMA)
Let 1 be a hypothesis with VCdim(H) = d. Then for all m,

<Z( ) (em/d)?

Remark: if VCdim(#) is finite, then the growth function is polynomial in m
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UNIFORM CONVERGENCE IN VC CLASS

THEOREM (UNIFORM CONVERGES IN VC CLASS (THEOREM 6.11))

Let H be a class and let m;(m) be its growth function. Then, for every D and every §
Ps~om(|Lp(h) — Ls(h)| >€) <6

4 1 2
where e can be choose as + v/ (log(r3(2m))) . In other words, this theorem tells us that
oV 2m

1
VCdim(H) < oo <~ ehm OgTTH(E) = 0 < uniform convergence property holds.
—00
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THE FUNDAMENTAL THEOREM OF LEARNING THEORY

THEOREM (THE FUNDAMENTAL THEOREM-QUANTITATIVE VERSION)

Let H be a hypothesis class from a domain X to {0,1} and let the loss function be the 0-1
loss. Then, there are absolute constants C, C such that:

‘H has the uniform covergence property with sample complexity

d +log(1/6
o, 41 108(1/9)

d + log(1/9)
[oge]
= <mfC <, T80

€2

H is agnostic PAC learnable with sample complexity

log(1
C1d+ og(1/4) <

d+ log(1/68
> m”<027g(/)
€

€2

‘H is PAC learnable with sample complexity

d + log(1/6
o, dtlos/®) _

<0y dlog(1/e€) + log(1/6)
€

€
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ADVANCED TOPICS
m Glivenko-Cantelli Theorem
m VC-entropy and Growth Function
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GLIVENKO-CANTELLI THEOREM

DEFINITION (EMPIRICAL DISTRIBUTION)

Let X, ..., X, be i.i.d. random variables in R with common cdf F'(z). The empirical
distribution function for X3, ..., X, is given by

1
Fo(z) = n Z 1 —oo,a)(x,)

THEOREM (GLIVENKO-CANTELLI THEOREM)

|Fn, — Flloo = sup|Fy(z) — F(x)| — 0 almost surely
zeR

Remark: Vz, F,(z) — F(x) trivially by LLN

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 30/40



GLIVENKO-CANTELLI THEOREM

B More generally, consider a space X and o—field F generated by borel set with
probability measure P and empirical measure P,

B Then F(z) = P((—o0,z]), and F,(z) = P,((—o0, x])

B We can rewrite sup|Fy, () — F(x)| as sup | P,(C) — P(C)|,
z€R ceC
where C = {(—o0, z]|z € R}

B What happens for the general C ?
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GLIVENKO-CANTELLI CLASS

DEFINITION (GC-CLASS)
Let C C {C|C measurable in X'}. Then if

[Pn — Pllc = sup |[P,(C) — P(C)|
ceC
we say class C is a Glivenko-Cantelli class.

DEFINITION (UNIFORMLY GC)

A class is called uniformly Glivenko-Cantelli if the convergence occurs uniformly over all
probability measures P on (X, F):

sup E||P,—Pllc—0
PeP(S,A)
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VC CLASS

DEFINITION (VC CLASS)

A class with finite VC dimension is called a Vapnik-Chervonenkis class or VC class
THEOREM (VAPNIK AND CHERVONENKIS, 1968)
A class of sets Cis uniformly GC if and only if it is a Vapnik-Chervonenkis class
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ADVANCED TOPICS
m Glivenko-Cantelli Theorem
m VC-entropy and Growth Function
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VC ENTROPY AND GROWTH FUNCTION

In previous lecture, we define the growth function as

n(m) = sup |Hc|
Ccx:|Cl=m

Let’s rewrite the growth function as another form:

DEFINITION (VAPNIK)

Let 21, ..., be m samples from X. Then define the number

NM(zy, ..., xp) = | {h(z1), ..., (zm)|h € H} | = |

Obviously

)= e [el= s 8P
ccx:|Cl=m {z1,....em }CH
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VC ENTROPY AND GROWTH FUNCTION

The supremum is taken so that the bound works even in the worst distribution.

In general case, we can replace supremum by exapectation w.r.t. a specific distribution,
which gives another value:

DEFINITION (VC-ENTROPY, ANNEALED VC-ENTROPY, GROWTH FUNCTION)

Let N* (1, ..., z,,) be defined as previous. Then we defined VC-entropy as
H*(m) =Elog N*(z1, ..., m)

The annealed VC-entropy as

H (m) =1ogEN™ (1, ..., )

And the growth function (with logarithm) as

G"(m) =log sup NM(zy1,..,xm)(=logm(m))

T1y--3Lm
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VC ENTROPY AND GROWTH FUNCTION

H"(m) < Hl},\(m) < G*(m)

Rmark: The fundamental theorem of learning theory tells us
H
lim GT(m)

m— 00

_ iy o8TH(M)
m m—00

m

=0<«= lim P(sup|Ls(h) — Lp(h)| >¢€)=0
m—ro0 heH
The convergence is uniform for all distribution P in (X, F)
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THREE MILESTONES OF LEARNING THEORY

THEOREM (VAPNIK)

lim D(sup |Ls(h) — Lp(h)| >¢€) =0

m—00 heH

is sufficient and necessary that

H
i L0

m—o0 m

=0

lim D(sup |Lg(h) — Lp(h)| > €) < e ™ ( fast decay )

m—00 heH

is sufficient if

H
Temn Hann (m)

m—o0 m

=0
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THREE MILESTONES OF LEARNING THEORY
THEOREM (VAPNIK)
lim P(sup|Ls(h)— Lp(h)| >¢€) =0 ,forall P € (X,F)
m—o0 hEeH
is sufficient and necessary that

H
lim C)

=0
m—00 m
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EXERCISES AND DISCUSSION
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