INTRODUCTION TO THE VC-DIMENSION

Wei-Ning Chen

December 28, 2018

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 1 / 40

OUTLINE

1 RECAP

- 2 MOTIVATION
- **3** THE VC-DIMENSION
 - Definitions
 - Examples
- **4** The Fundamental Theorem of Learning Theory
- **5** ADVANCED TOPICS
 - Glivenko-Cantelli Theorem
 - VC-entropy and Growth Function
- **6** EXERCISES AND DISCUSSION

DEFINITION (UNIFORM CONVERGENCE)

We say that a hypothesis class \mathcal{H} has the uniform convergence property (w.r.t. a domain Z and a loss function ℓ) if there exists a function $m_{\mathcal{H}}^{UC}$ such that for every $\epsilon, \delta \in (0, 1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of $m \geq m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then

$$\mathcal{P}(|L_S(h) - L_{\mathcal{D}}(h)| \le \epsilon, \forall h \in \mathcal{H}) \ge 1 - \delta$$

Equivalently,

$$\lim_{m \to \infty} \mathcal{P}(\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon) = 0$$

Remark: Compare to the difinition of PAC:

$$\mathcal{P}(L_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \le \epsilon) \ge 1 - \delta$$

THEOREM (NO-FREE-LUNCH)

Let \mathcal{A} be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

There exists a function
$$f: X \to \{0, 1\}$$
 with $L_{\mathcal{D}}(f) = 0$.

$$\mathcal{P}(L_{\mathcal{D}}(\mathcal{A}(S)) \ge \frac{1}{8}) \ge \frac{1}{7}$$

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

- **5** Advanced Topics
 - Glivenko-Cantelli Theorem
 - VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

In chapter 2, we see that every finite hypothesis class ${\cal H}$ is learnable; moreover, the sample complexity is bounded by

$$m_{\mathcal{H}}(\delta,\epsilon) \le \frac{\log(|\mathcal{H}|)/\delta}{\epsilon}$$

So, what if $|\mathcal{H}| = \infty$?

EXAMPLE

Let $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{0, 1\}$, and let \mathcal{H} be the class of concentric circles in the plane, that is, $\mathcal{H} = \{h_r : r \in \mathbb{R}_+\}$. Prove that \mathcal{H} is PAC learnable (assume realizability), and its sample complexity is bounded by

$$n_{\mathcal{H}}(\epsilon, \delta) \le \frac{\log(2\delta)}{\epsilon}.$$

First, we specify \mathcal{H}_B . By definition, if $h \in \mathcal{H}_B$, we have $\mathcal{D}(h(x) \neq h^*(x)) \geq \epsilon$

Equivalently, $\mathcal{D}(h(x) = h^*(x)) \leq 1 - \epsilon$

If now \mathcal{H} is finite, we can apply union bound:

$$\mathcal{D}^{m}(\bigcup_{h\in\mathcal{H}_{B}}\forall i=[m]|h(x_{i})=h^{*}(x_{i}))\leq|\mathcal{H}|(1-\epsilon)^{m}\leq\delta$$

We can slightly modify the union bound for the case $|\mathcal{H}| = \infty$.

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 9 / 40

э

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 10 / 40

э

WEI-NING CHEN

DECEMBER 28, 2018 11 / 40

э

Let
$$S \sim \mathcal{D}^m$$
, and $r_{\min} = \min_{x \in S} r_x$, $r_{\max} = \max_{x \in S} r_x$.
We have
$$\mathcal{P}_{S \sim \mathcal{D}^m}(L_{\mathcal{D}}(h_S) \ge \epsilon) \le \mathcal{P}_{S \sim \mathcal{D}^m}(r_{\min} \ge r_1 \cup r_{\max} \le r_0)$$

$$\le \mathcal{P}_{S \sim \mathcal{D}^m}(r_{\min} \ge r_1) + \mathcal{P}_{S \sim \mathcal{D}^m}(r_{\max} \le r_0)$$

$$\le 2(1 - \epsilon)^m \le 2e^{-m\epsilon} \le \delta$$

Therefore, for all ϵ and δ , the sample complexity can be bounded by

$$m \le \frac{\log(2/\delta)}{\epsilon} \quad \Box$$

In chapter 2, we see that every finite hypothesis class H is learnable; moreover, the sample complexity is bounded by

$$m_{\mathcal{H}}(\delta, \epsilon) \le \frac{\log(|\mathcal{H}|)/\delta}{\epsilon}$$

- Also, we see some examples that even the class is infinite-size, it may still be learnable.
- Therefore, we need a measure of \mathcal{H} 's complexity
- In this cahpter, we will formally define the complexity of ℋ (VC dimension), and show that

 $\mathcal H$ has uniform convergence property $\iff \text{VCdim}(\mathcal H) < \infty$

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

- **5** Advanced Topics
 - Glivenko-Cantelli Theorem
 - VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

DEFINITION (RESTRICTION \mathcal{H} to C)

Let \mathcal{H} be a class of function from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, ..., c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set off all functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

 $\mathcal{H}_C = \{h(c_1), ..., h(c_m)) : h \in \mathcal{H}$

DEFINITION (SHATTERING)

A hypothesis class \mathcal{H} shatters a finite set C if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

イロト イポト イヨト イヨト

THE VC-DIMENSION

DECEMBER 28, 2018 16 / 40

ъ

・ロット (日) ・ (日) ・

THE VC-DIMENSION

COROLLARY (COROLLARY6.4)

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$. Let m be a training set size. Assume that there exists a set C of size 2m that is shattered by \mathcal{H} . Then, for any learning algorithm \mathcal{A}

$$\mathcal{P}(L_{\mathcal{D}}(\mathcal{A}(S)) \ge \frac{1}{8}) \ge \frac{1}{7}$$

Remark: This is a direct result from NFL Theorem

Remark2: If for all m, there exists a set C of size 2m that is shattered by \mathcal{H} , then \mathcal{H} is not PAC learnable

THE VC-DIMENSION

DEFINITION (VC-DIMENSION)

The VC-dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size, we say that \mathcal{H} has infinite VC-dimension.

Remark: If $VCdim(\mathcal{H})=d$, it means that

 $\exists C \subset \mathcal{X}$ that can be shattered by \mathcal{H} ,

NOT

 $\forall C \subset \mathcal{X}$ that can be shattered by \mathcal{H} ,

Let \mathcal{H} be the all threshold function on \mathbb{R} .

For an arbitrary set $C = \{c_1\}$, \mathcal{H} shatters C, therefore VDdim $(\mathcal{H}) \ge 1$.

For an arbitrary set $C = \{c_1, c_2\}$, \mathcal{H} does not shatter C. Therefore, $\mathsf{VDdim}(\mathcal{H}) < 2$.

- Let \mathcal{H} be the intervals over \mathbb{R} ; that is, $\mathcal{H} = \{\mathbb{1}_{[a,b]}(x) | a, b \in \mathbb{R}\}$
- It is easy to show that $VCdim(\mathcal{H}) = 2$

• • • • • • • • •

Let \mathcal{H} be the the class of axis aligned rectangles:

$$\mathcal{H} = \{\mathbb{1}_{[a,b] \times [c,d]} | a, b, c, d \in \mathbb{R}\}$$

DECEMBER 28, 2018 21 / 40

EXAMPLE: AXIS ALIGNED RECTANGLES

э.

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

- 5 ADVANCED TOPICS
 - Glivenko-Cantelli Theorem
 - VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

THE FUNDAMENTAL THEOREM OF LEARNING THEORY

THEOREM (THE FUNDAMENTAL THEOREM OF STATISTICAL LEARNING)

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are quivalent:

- **1** *H* has the uniform covergence property.
- **2** Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3 H is agnostic PAC learnable.
- 4 H is PAC learnable.
- **5** Any ERM rule is a successful PAC learner for \mathcal{H} .
- 6 H has a finite VC-dimension.

GROWTH FUNCTION ANS SAUER'S LEMMA

The growth function measures the maximal "effective? size of \mathcal{H} on a set of m examples.

DEFINITION (GROWTH FUNCTION)

Let $\mathcal H$ be a hypothesis class. Then the growth function of $\mathcal H$ is defined as

$$\tau_{\mathcal{H}}(m) = \sup_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|$$

In words, $\tau_{\mathcal{H}}(m)$ is the number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Remark: if $VCdim(\mathcal{H}) = d$, then for any $m \le d$ we have $\tau_{\mathcal{H}}(m) = 2^m$. However, what interesting is the case $m \ge d$.

THEOREM (SAUER'S LEMMA)

Let \mathcal{H} be a hypothesis with $VCdim(\mathcal{H}) = d$. Then for all m,

$$au_{\mathcal{H}}(m) \le \sum_{i=0}^d \binom{m}{i} \le (em/d)^d$$

Remark: if VCdim(H) is finite, then the growth function is polynomial in m.

THEOREM (UNIFORM CONVERGES IN VC CLASS (THEOREM 6.11))

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}(m)$ be its growth function. Then, for every \mathcal{D} and every δ

 $\mathcal{P}_{S \sim \mathcal{D}^m}(|L_{\mathcal{D}}(h) - L_S(h)| > \epsilon) \le \delta$

where ϵ can be choose as $\frac{4 + \sqrt{(\log(\tau_{\mathcal{H}}(2m)))}}{\delta\sqrt{2m}}$. In other words, this theorem tells us that

$$VCdim(\mathcal{H}) < \infty \iff \lim_{\ell \to \infty} \frac{\log \tau_{\mathcal{H}}(\ell)}{\ell} = 0 \iff uniform \ convergence \ property \ holds.$$

THE FUNDAMENTAL THEOREM OF LEARNING THEORY

THEOREM (THE FUNDAMENTAL THEOREM-QUANTITATIVE VERSION)

Let \mathcal{H} be a hypothesis class from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, there are absolute constants C_1 , C_2 such that:

1 *H* has the uniform covergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC} \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2 *H* is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}} \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3 *H* is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}} \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

5 Advanced Topics

- Glivenko-Cantelli Theorem
- VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

GLIVENKO-CANTELLI THEOREM

DEFINITION (EMPIRICAL DISTRIBUTION)

Let $X_1, ..., X_n$ be i.i.d. random variables in \mathbb{R} with common cdf F(x). The empirical distribution function for $X_1, ..., X_n$ is given by

$$F_n(x) = \frac{1}{n} \sum_i \mathbb{1}_{(-\infty,x](X_i)}$$

THEOREM (GLIVENKO-CANTELLI THEOREM)

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$$
 almost surely

Remark: $\forall x, F_n(x) \rightarrow F(x)$ trivially by LLN

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 30 / 40

More generally, consider a space \mathcal{X} and σ -field \mathcal{F} generated by borel set with probability measure P and empirical measure P_n

Then
$$F(x) = P((-\infty, x])$$
, and $F_n(x) = P_n((-\infty, x])$

We can rewrite
$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)|$$
 as $\sup_{c \in \mathcal{C}} |P_n(C) - P(C)|$,
where $\mathcal{C} = \{(-\infty, x] | x \in \mathbb{R}\}$

What happens for the general C?

GLIVENKO-CANTELLI CLASS

DEFINITION (GC-CLASS)

Let $C \subset \{C | C \text{ measurable in } \mathcal{X}\}$. Then if

$$||P_n - P||_{\mathcal{C}} = \sup_{c \in \mathcal{C}} |P_n(C) - P(C)|$$

we say class \mathcal{C} is a Glivenko-Cantelli class.

DEFINITION (UNIFORMLY GC)

A class is called uniformly Glivenko-Cantelli if the convergence occurs uniformly over all probability measures \mathcal{P} on $(\mathcal{X}, \mathcal{F})$:

$$\sup_{P \in \mathcal{P}(S,A)} \mathbb{E} \| P_n - P \|_{\mathcal{C}} \to 0$$

INTRODUCTION TO THE VC-DIMENSION

DEFINITION (VC CLASS)

A class with finite VC dimension is called a Vapnik-Chervonenkis class or VC class

THEOREM (VAPNIK AND CHERVONENKIS, 1968)

A class of sets C is uniformly GC if and only if it is a Vapnik-Chervonenkis class

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 33 / 40

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

5 Advanced Topics

- Glivenko-Cantelli Theorem
- VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION

VC ENTROPY AND GROWTH FUNCTION

In previous lecture, we define the growth function as

$$\tau_{\mathcal{H}}(m) = \sup_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|$$

Let's rewrite the growth function as another form:

DEFINITION (VAPNIK)

Let $x_1, ... x_m$ be m samples from \mathcal{X} . Then define the number

$$N^{\mathcal{H}}(x_1, ..., x_m) = |\{h(x_1), ..., h(x_m) | h \in \mathcal{H}\}| = |\mathcal{H}_{\{x_1, ..., x_m\}}|$$

Obviously

$$\tau_{\mathcal{H}}(m) = \sup_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C| = \sup_{\{x_1, \dots, x_m\} \subset \mathcal{H}} N^{\mathcal{H}}(x_1, \dots, x_m)$$

VC ENTROPY AND GROWTH FUNCTION

The supremum is taken so that the bound works even in the worst distribution. In general case, we can replace supremum by exapectation w.r.t. a specific distribution, which gives another value:

DEFINITION (VC-ENTROPY, ANNEALED VC-ENTROPY, GROWTH FUNCTION)

Let $N^{\mathcal{H}}(x_1,...,x_m)$ be defined as previous. Then we defined VC-entropy as

$$H^{\mathcal{H}}(m) = \mathbb{E} \log N^{\mathcal{H}}(x_1, ..., x_m)$$

The annealed VC-entropy as

$$H_{ann}^{\mathcal{H}}(m) = \log \mathbb{E}N^{\mathcal{H}}(x_1, ..., x_m)$$

And the growth function (with logarithm) as

$$G^{\mathcal{H}}(m) = \log \sup_{x_1, \dots, x_m} N^{\mathcal{H}}(x_1, \dots, x_m) (= \log \tau_{\mathcal{H}}(m))$$

WEI-NING CHEN

INTRODUCTION TO THE VC-DIMENSION

VC ENTROPY AND GROWTH FUNCTION

COROLLARY

$$H^{\mathcal{H}}(m) \le H^{\mathcal{H}}_{ann}(m) \le G^{\mathcal{H}}(m)$$

Rmark: The fundamental theorem of learning theory tells us

$$\lim_{m \to \infty} \frac{G^{\mathcal{H}}(m)}{m} = \lim_{m \to \infty} \frac{\log \tau_{\mathcal{H}}(m)}{m} = 0 \iff \lim_{m \to \infty} \mathcal{P}(\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon) = 0$$

The convergence is uniform for all distribution P in $(\mathcal{X}, \mathcal{F})$

THREE MILESTONES OF LEARNING THEORY

THEOREM (VAPNIK)

1

$$\lim_{m \to \infty} \mathcal{D}(\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon) = 0$$

is sufficient and necessary that

$$\lim_{m \to \infty} \frac{H^{\mathcal{H}}(m)}{m} = 0$$

2

$$\lim_{m \to \infty} \mathcal{D}(\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon) \le e^{-c\epsilon^2 m} \text{ (fast decay)}$$

is sufficient if

$$\lim_{m \to \infty} \frac{H_{ann}^{\mathcal{H}}(m)}{m} = 0$$

WEI-NING CHEN

THREE MILESTONES OF LEARNING THEORY

THEOREM (VAPNIK)

3

$$\lim_{m\to\infty}P(\sup_{h\in\mathcal{H}}|L_S(h)-L_{\mathcal{D}}(h)|>\epsilon)=0\text{ ,for all }P\in(\mathcal{X},\mathcal{F})$$

is sufficient and necessary that

$$\lim_{m \to \infty} \frac{G^{\mathcal{H}}(m)}{m} = 0$$

337		ът.			\sim	_	
w	EL-	- N	IN	GU		ΗN	ł

INTRODUCTION TO THE VC-DIMENSION

DECEMBER 28, 2018 39 / 40

∃ → 4

2 MOTIVATION

3 THE VC-DIMENSION

- Definitions
- Examples

4 The Fundamental Theorem of Learning Theory

- **5** ADVANCED TOPICS
 - Glivenko-Cantelli Theorem
 - VC-entropy and Growth Function

6 EXERCISES AND DISCUSSION